Доклады Академии наук СССР 1960. Том 132, № 6

ФИЗИЧЕСКАЯ ХИМИЯ

ю. в. плесков

РОЛЬ НЕОСНОВНЫХ НОСИТЕЛЕЙ ТОКА В ПРОЦЕССЕ АНОДНОГО РАСТВОРЕНИЯ ЭЛЕКТРОННОГО ГЕРМАНИЯ

(Представлено академиком А. Н. Фрумкиным 12 II 1960)

Исследования анодного растворения германия показали, что этот процесс протекает с участием дырок. При достаточно высокой плотности тока анодного растворения германия n-типа, в котором дырки являются неосновными носителями, граница германий — электролит является своего рода коллектором дырок, причем имеет место «умножение тока» на коллекторе, связанное с участием в реакции и свободных электронов полупроводника. Другими словами, переходящий в раствор атом германия передает электроны одновременно в валентную (для чего необходимы дырки) и в свободную зоны. Суммарное уравнение реакции (в кислой среде) Ge $+ x \circ + 3H_2O \rightarrow$ \rightarrow H_2 GeO₃ + (4-x) $\ddot{\circ}$ + $4H^+$. Для коэффициента умножения тока $\alpha_0 = 4/x$ (равного отношению предельного тока анодного растворения к предельному току диффузии дырок из объема полупроводника к его поверхности) разные авторы (1-4) приводят значения от 1,3 до 4,4. Были сделаны попытки связать величину α_0 с той или иной молекулярной схемой реакции (3,5). Задачей настоящей работы являлось изучение зависимости а от условий анодного растворения германия.

Методика эксперимента

Для измерения а' мы воспользовались методом, предложенным Брэттеном и Гэрреттом (1). Электрод из электронного германия с удельным сопротивлением 3 ом см и диффузионной длиной дырок 0,7 мм был выполнен в виде тонкого (толщиной около 0,1 мм) диска диаметром 8 мм, на одной стороне которого находился p—n-переход, а другая сторона погружалась в раствор. По окружности электрода расположен кольцевой омический контакт, припаянный оловом. Качество контактов проверялось снятием вольтамперных характеристик в постоянном и переменном токе. Поверхность электрода (за исключением участка, погруженного в электролит) была изолирована с помощью чистого парафина. Площадь поверхности раздела германий — раствор составляла 0,25 см², площадь p-n-перехода 0,2 см2. Анодное растворение германия проводилось при постоянном потенциале, соответствующем предельному току растворения; в качестве потенциостата мы использовали электронный полярограф ПЭ-312. С помощью p-n-перехода, включенного в пропускном направлении, осуществлялась инжекция в область n-типа дырок, которые диффундировали к поверхности раздела германий — раствор и участвовали в реакции растворения. Увеличение тока анодного растворения ΔI_a в зависимости от тока инжекции I_p записывалось автоматически*. Из полученных данных мы рассчитывали величину коэффициента усиления по току $\alpha = d(\Delta I_a)/dI_p$ нашей системы, который можно записать в форме $\alpha = \gamma \beta \alpha'$, где γ — эффективность эмиттера (доля дырочного тока в токе p—n-перехода), β —коэффициент пропус-

^{*} Для большей точности мы измеряли на опыте не $\Delta I_{\grave{a}}$, а величину $\Delta I_a - I_p$ (путем соответствующего устройства электрической схемы), т. е. увеличение электронного тока через поверхность электрода.

кания (доля инжектированных эмиттером дырок, которые достигают коллектора, не рекомбинируя), α' — коэффициент умножения тока на коллекторе (увеличение обратного тока коллектора при увеличении тока дырок на единицу). В плоскостных триодах аналогичной конструкции эффективность эмиттера γ и коэффициент пропускания β весьма близки к 1, так что поток инжекции дырок на поверхность германий — раствор с точностью 2—3% равен пропускному току p—n-перехода I_p . Скорость поверхностной рекомбинации на границе германий — водный раствор невелика, как это следует из литературы (3 , 6) и наших косвенных данных. Следовательно, измеренная на опыте величина $d(\Delta I_a)/dI_p$ практически совпадает с коэффициентом умножения тока α' реакции анодного растворения.

Полученные результаты

На рис. 1 приведена зависимость $\Delta I_a - I_p$ от I_p для анодного растворения германия в 1 N H_2SO_4 в темноте и при освещении с различной интенсивностью E; на рис. 2 и 3 — рассчитанные из этих данных зави-

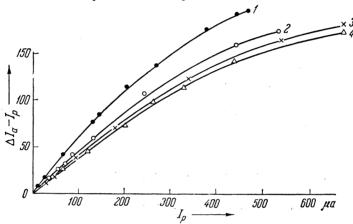


Рис. 1. Ускорение анодного растворения германия (µa) в 1N H₂SO₄ в зависимости от тока инжекции через p-n-переход. Освещенносьь электрода(в условных единицах): I-0; 2-3,5; 3-5,8; 4-7,5

симости $d\left(\Delta I_a\right)/dI_p$ от I_p и E. Освещенность E определялась по увеличению обратного тока I_s p — n-перехода при освещении (при обратном смещении 3 в) и приводится в условных единицах $\Delta I_s/I_s^{\text{темн}}$.

Из рис. 1 видно, что при небольших значениях $I_p(I_p \leqslant I_a^0)^*$ имеет место прямая пропорциональность между ΔI_a и I_p , отмеченная ранее (¹), т. е. $d\left(\Delta I_a\right)/dI_p$ сохраняет постоянное значение. Коэффициент умножения тока $\alpha_0 = [d\left(\Delta I_a\right)/dI_p]_{I_p=0}$, рассчитанный по кривой I (рис. 1), составляет 1,6—1,7 (рис. 2), что хорошо согласуется с результатами прямых измерений Брэттена и Гэрретта (¹) (1,4—1,8) и близко к значению 1,4, полученному Улиром менее прямым методом (⁴), а также к величине 1,6—2,5, рассчитанной по косвенным данным Геришера и Бека (²,8) с учетом нашей работы (7) **. Величина α_0' не зависит от потенциала гер-

^{*} В отсутствие инжекции нормальный предельный ток анодного растворения применявшихся электродов I_a^0 составлял около 90 μa .

^{**} В работах $(^2,^8)$ инжекция дырок в германий производилась не помощью p-n-перехода, а в результате реакции восстановления K_3 Fe $(CN)_6$, которая протекает с участием валентных электронов. Отношение ΔI_a к току восстановления K_3 Fe $(CN)_6$ составляло 1,3—1,7. По нашим данным $(^7)$, доля валентных электронов в восстановлении K_3 Fe $(CN)_6$ на германиевом электроде составляет 0,6—0,8 (а не 1, как предполагали авторы работ $(^2,^8)$).

мания (в интервале 1—3 в) и одинакова при растворении в 1 N H₂SO₄ и 1 N KOH; в 48%-м растворе HF $\alpha_0'=1,3*$. При увеличении I_p относительно I_a^0 $d(\Delta I_a)/dI_p$ уменьшается и при

При увеличении I_p относительно I_a^0 $d(\Delta I_a)/dI_p$ уменьшается и при $I_p \approx 5 I_a^0$ составляет 1,15, а при $I_p \approx 10 I_a^0$ всего 1,03. Освещение электрода не изменяет характера зависимости $d(\Delta I_a)/dI_p$ от I_p (рис. 2), однако абсолютная величина $d(\Delta I_a)/dI_p$ уменьшается с ростом освещенности E (рис. 3).

Из рис. 1 видно, что с увеличением потока инжекции величина $\Delta I_a - I_p$ стремится к некоторому пределу; экстраполяция кривых 1-4

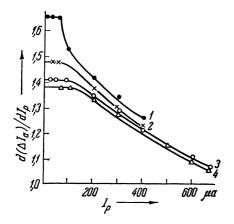


Рис. 2. Зависимость умножения тока от тока через p-n-переход I_p . Освещенность электрода: 1-0; 2-3,5; 3-5,8; 4-7,5

Рис. 3. Зависимость умножения тока от освещенности электрода E. Ток через p-n-переход: 1-0; 2-200 μ a; 3-300 μ a

(рис. 1) на $I_p \to \infty$ (путем построения этих кривых в координатах $\frac{1}{\Delta I_a - I_p}$, $\frac{1}{I_p}$) дает предельное значение около 200—250 μ a (что в 2—3 раза превышает I_a^0).

Обсуждение результатов

Наблюдавшаяся нами зависимость коэффициента умножения тока α' анодного растворения германия от тока инжекции дырок качественно подтверждается результатами опубликованной недавно работы Бека и Геришера (8). По данным этих авторов, ускорение анодного растворения германия n-типа в 0,1 N NaOH в присутствии K_8 Fe (CN) $_6$ зависит от концентрации последнего, причем с ростом этой концентрации и следовательно, скорости $I_{восст}$ восстановления феррицианида значение $\Delta I_a/I_{восст}$ уменьшается. Однако в цитированной работе не исследовался вопрос о доле γ валентных электронов в токе восстановления K_8 Fe (CN) $_6$. Если принять, что γ мало меняется при изменении концентрации феррицианида, то уменьшение $\Delta I_a/I_{восст} = \alpha'\gamma - 1$ связано в основном с уменьшением α' при увеличении скорости инжекции дырок восстановлением K_8 Fe (CN) $_6$.

Производная $d\left(\Delta I_a\right)/dI_p$ характеризует зависимость электронной составляющей I_n суммарного тока анодного растворения $I_a=I_p'+I_n$ от дырочного тока через поверхность: $d\left(\Delta I_a\right)/dI_p=1+d\left(\Delta I_n\right)/dI_p$. Уменьшение ее с ростом I_p означает, что с увеличением потока дырок на поверхность растворяющегося германия увеличивается преимущественно дырочная компонента тока растворения. Из измеренного экспериментально

^{*} По нашим данным, предельный ток анодного расворения германия в HF в 4—5 раз выше, чем в $\rm H_2SO_4$ KOH, что, возможно, объясняется значительной скоростью рекомбинации на границе германий — раствор $\rm HF$., 1362

значения $\alpha_0 = 1,65$ следует, что в процессе анодного растворения (без инжекции) при переходе 1 атома германия из кристаллической решетки в раствор потребляется 2,4 дырки и 1,6 электрона переходит в зону проводимости. При увеличении инжекции (с помощью p-n-перехода или при освещении) доля дырок и свободных электронов изменяется и при максимальном значении I_p , достигнутом в настоящей работе, составляет, соответственно, 3,9 и 0,1. Непрерывное изменение макроскопического значения α' (т. е. производной $d\left(\Delta I_a\right)/dI_p\right)$ при сохранении постоянными состава раствора, потенциала и других условий растворения (кроме величины инжекции) не позволяет, очевидно, связать эту величину с какой-либо определенной молекулярной схемой реакции растворения, например, предположив, что какая-либо промежуточная стадия протекает исключительно с участием дырок (3 , 5). По-видимому, процесс идет одновременно двумя путями (с передачей заряда в валентную и свободную зоны полупроводника).

С другой стороны, увеличение абсолютного значения электронной составляющей тока растворения при увеличении дырочного тока служит известным подтверждением точки зрения Дьюалда (9), согласно которой дырочный и электронный токи не относятся к двум независимым путям анодного растворения, но связаны с элементарным актом реакции. Можно предположить, что наблюдаемое уменьшение $d(\Delta I_n)/dI_p$ с ростом скорости растворения связано с тем, что при больших токах через поверхность германий — электролит становится существенной рекомбинация в слое пространственного заряда, величина которой обычно принимается незначительной, и число дырок участвующих в реакции, оказывается меньше, чем ток инжекции. В этом случае микроскопическое значение коэффициента умножения тока α' (которое определяется числом дырок и свободных электрронов, принимающих участие в элементарном акте реакции) отличается от приведенных выше измеренных на опыте значений.

Приношу глубокую благодарность проф. В. Н. Кабанову за помощь

при обсуждении результатов.

Институт электрохимии Академии наук СССР Поступило 8 II 1960

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. H. Brattain, C. G. B. Garrett, Bell Syst. Techn. J., **34**, 129 (1955).

² H. Gerischer, F. Beck, Zs. phys. Chem., N. F., **13**, 389 (1957).

³ J. B. Flynn, J. Electrochem. Soc., **105**, 715 (1958).

⁴ A. Uhlir, Bell Syst. Techn. J., **35**, 333 (1956).

⁵ D. R. Turner, J. Electrochem. Soc., **103**, 252 (1956).

⁶ W. W. Harvey, H. C. Gatos, J. Appl. Phys., **29**, 1267 (1958).

⁷ Ю. В. Плесков, ДАН, **130**, 363 (1960).

⁸ F. Beck, H. Gerischer, Zs. Elektrochem., **63**, 943 (1959).

⁹ J. F. Dewald, Bkh. Semiconductors (Am. Chem. Soc. Monograph., № 140), N. Y., 1959.