ФИЗИЧЕСКАЯ ХИМИЯ

ю. в. плесков

РЕАКЦИИ ВОССТАНОВЛЕНИЯ НА ГЕРМАНИЕВОМ КАТОДЕ

(Представлено академиком А. Н. Фрумкиным 17 IX 1959)

В электрохимических процессах на полупроводниковом электроде могут принимать участие свободные электроны и дырки. Ранее было высказано мнение (1), что восстановительные реакции на германиевом электроде протекают с участием свободных электронов. Согласно другому предположению (2), при восстановлении K_3 Fe(CN) $_6$ на германиевом катоде электроны переходят на ионы $Fe(CN)_6^3$ из валентной зоны германия, оставляя в ней дырки. В прежней работе автора (3) прямым методом было доказано наличие инжекции дырок в германий n -типа при восстановлении ионов $Fe(CN)_6^3$ и MnO_4 . Таким образом, граница раздела германий — электролит может служить как бы эмиттером в случае протекания на ней некоторых восстановительных процессов.

Целью настоящей работы было исследование кинетики и измерение коэффициента инжекции (доли валентных электронов в общем токе) некоторых реакций восстановления на германиевом электроде.

Методика эксперимента

Электроды для измерения коэффициента инжекции представляли собой диски диаметром 6 мм и толщиной около 0,12 мм, изготовленные из монокристаллического германия n-типа с удельным сопротивлением $\rho 2,5$ ом см и диффузионной длиной дырок L 0,5—0,7 мм; кристаллографическая ориентация (111). По окружности диска располагался кольцевой омический никелевый контакт, припаянный оловом. На одной стороне германиевой пластинки в центре находился p-n-переход, образованный вплавлением индия (диаметр перехода около 3 мм). Качество обоих контактов проверялось снятием вольтамперных характеристик в постоянном токе, а также в переменном токе с помощью катодного осциллографа. Вся поверхность электрода покрычалась силиконовым лаком и парафином, за исключением круга диаметром 1-2 мм на стороне, противоположной p-n-переходу. Эта свободная поверхность помещалась в электролит, в котором находились вспомогательный электрод для поляризации и электрод сравнения. При пропускании катодного тока через границу германий — электролит она являлась эмиттером; коллектором служил p-n-переход. Изменение обратного тока колектора Δ $I_{\text{колл}}$ (при смещении $V_{\text{колл}}=3$ в) в зависимости от тока восстановления $I_{\text{восст}}$ записывалось с помощью электронного полярографа ПЭ-312; из полученных данных рассчитывалась величина коэф-

лярографа ПЭ-312; из полученных данных рассчитывалась величина коэффициента усиления по току
$$\alpha = \left(\frac{\Delta I_{\text{колл}}}{I_{\text{восст}}}\right)_{\pmb{v}_{\text{колл}}}$$
 этого своеобразного триода

(все измерения проводились в постоянном токе). Так как расстояние от p — n-перехода до электролита не превышало 70— $80~\mu$, то почти все дырки, инжектированные в электрод электрохимической реакцией, достигали коллектора (коэффицент передачи в плоскостных триодах аналогичной конструкции составляет 0.96—0.99). Поэтому измеренные величины α практически совпадают с коэффициентом инжекции γ при условии, что скорость поверхностной рекомбинации на границе германий — электролит мала. Незначительная 362

величина $\Delta I_{\text{колл}}$ при погружении сухого электрода в исследуемые растворы (при $I_{\text{восст}}=0$), а также литературные данные (4, 5) показывают, что это предположение, по-видимому, является обоснованным (в отсутствие адсорбированного водорода на электроде).

Поляризационные кривые снимались с помощью полярографа ПЭ-312 на вращающихся дисковых электродах из платины и монокристаллического

германия n-типа ($\rho = 1,8$ ом см, L = 0,3 мм) и p-типа ($\rho = 2,8$ см см, L = 0,3 мм).

Перед измерениями германиевые электроды травились в смеси СР-4. Применялись реактивы высокой степени чистоты. Все измерения проводились в атмосфере очищенного азота в темноте. Значения электродных потенциалов приводятся против нормального водородного электрода.

Полученные результаты

H з м е р е н и е $\,$ к о э ф ф и ц и е н т а и н ж е к ц и и. На рис. 1 приведены кривые зависимости $\Delta I_{
m колл}$ от $I_{
m BOCCT}$ для 5 различных окислите-

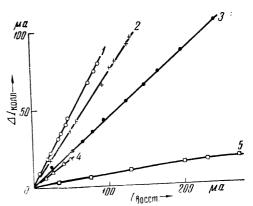


Рис. 1. Изменение соратного тока коллектора в зависимости от тока восстановления: $1 - \text{KMnO}_4$: $2 - \text{K}_3\text{Fe}(\text{CN})_6$; $3 - \text{KJ}_3$; 4 - xuhoh; $5 - \text{K}_2\text{Cr}_2\text{O}_7$

лей. Во всех случаях α лежит между 0 и 1 и, кроме $\mathrm{Cr_2O_7^{2-}}$, не зависит от $I_{\mathrm{восст}}$ (табл. 1).

Восстановление H_2O_2 не влияет на $I_{\text{колл}}$ и, следовательно, не сопровождается инжекцией дырок в германий. В случае K_3 Fe (CN) $_6$ и KMnO $_4$ некоторое влияние на α оказывает концентрация окислителя; в случае KJ_3 α не зависит от его концентрации.

Таблица 1

Восстанавлива- ющееся вещество	Конц. восстанав- ливающегося ве- щества, мол/л		Потенциал германия, в	Коэффициент инжекции ү	Максимальное значение і _{восст} , ма/см²
${ m KMnO_4} \ { m K_3Fe(CN)_6} \ { m KJ_3} \ { m Xинон} \ { m K_2Cr_2O_7} \ { m H_2O_2} \ { m H_2O_2}$	$ \begin{array}{c} 0,12 \\ 0,28 - 0,56 \\ 0,1 - 0,33 \\ 0,4 \\ 0,04 - 0,12 \\ 0,4 \end{array} $	1 N H ₂ SO ₄ 1—2 N KOH 1 N KJ 1 N H ₂ SO ₄ 1 N H ₂ SO ₄ 0,3 N K ₂ SO ₄	$\begin{array}{c c} 0,2\\ -0,2\\ 0,2\\ -0,4\\ -0,4\\ -0,7 \end{array}$	0,78-0,88 0,66-0,80 0,42 0,38 0,03-0,08	13,5 8,6 22 3,3 83 20

Измеряемые значения α очень чувствительны к состоянию поверхности электрода. С увеличением отрицательного потенциала германия, по мере приближения к потенциалу выделения водорода, α начинает падать (рис. 1, 5). Выделяющийся на германиевом катоде водород, адсорбируясь на полупроводнике (или внедряясь в кристаллическую решетку), резко увеличивает скорость поверхностной рекомбинации (6), что сопровождается изменением электрохимических свойств германия (3 , 5). Очевидно, адсорбция водорода начинается при менее отрицательных потенциалах, чем его видимое выделение на электроде, и вызывает уменьшение коэффициента передачи применявшихся электродов, а следовательно, и α . Возможно, малые значения α в случае восстановления $K_2Cr_2O_7$ и отсутствие инжекции при восстановлении H_2O_2 объясняются тем, что эти реакции протекают при весьма отрицательных потенциалах, вблизи потенциала выделения водорода, и, следовательно, на наводороженном электроде.

Поляризационные кривые всех исследованных веществ (состав растворов указан в табл. 1) на электродах из платины и германия п-типа имеют форму хорошо выраженной волны, причем плотность предельного тока $i_{\rm np}$ на обоих металлах одинакова (кривая восстановления ${\rm KMnO_4}$ на германии содержит 2 волны). Плотность предельного тока пропорциональна корню квадратному из угловой скорости вращения электрода о (рис. 2, 4); следовательно, предельные скорости реакций восстановления

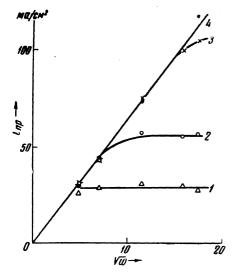


Рис. 2. Зависимость предельного тока восстановления KJ_3 (0,096 \emph{N}) на вращающемся дисковом германиевомэлектроде от $\sqrt[l]{\omega}$. 1— Ge p-типа; 2— то же (при умеренном освещении электрода); 3 — то же (наводороженный электрод); 4— Ge n-типа

на Pt и Ge *n*-типа определяются скоростью диффузии в растворе частиц восстанавливающихся веществ к поверхности электрода (7) и не зависят от материала: электрода. Освещение электрода не меняет высоты волны и почти не влияет на форму поляризационной кривой на германии п-типа.

Kривые восстановления K_3 $Fe(CN)_6$, $K_2Cr_2O_7$, хинона и H_2O_2 на дырочном германии также содержат 1 волну (кривая КМпО4 2 волны), причем $i_{\rm np}$ та же, что и на электродах из ${\sf Pt}$ и Ge *n*-типа до плотностей тока 20 ма/см² (в случае K_3 Fe(CN)₆ — до 100 ма/см²). Предельный ток пропорционален $\sqrt{\omega}$. Однако кривые сдвинуты на 0,2—0,3в в сторону отрицательных значений потенциала по сравнению с кривыми на Ge *n*-типа; при освещении электрода они приближаются к соответствующим кривым, снятым на электронном германии.

Высота волны восстановления КЈз на

 τ — се n-типа τ Ge p-типа (рис. 3, 1) меньше, чем на Ge τ п-типа, и мало зависит от размешивания раствора (рис. 2, 1). При освещении электрода кривая не только сдвигается в сторону положительных значений потенциала, но и величина предельного тока увеличивается и достигает значения, соответствующего электродам из Pt и Ge n-типа (рис. 3, 2). Такое же влияние на волну восстановления КЈз оказывает предварительное наводораживание электрода (при плотности тока 10 ма/см² в течение 1-2 мин.). На сильно освещенном или наводороженном германии p-типа предельный ток пропорционален $V \omega$ почти во всем интервале использованных плотностей тока (рис. 2, 3). При умеренном освещении электрода прямая пропорциональность между $i_{ exttt{np}}$ и $\sqrt{\omega}$ имеет место в небольшом интервале $i_{\text{пр}}$ (рис. 2, 2).

Обсуждение результатов

Приведенные выше значения коэффициента инжекции показывают, что вовсех рассмотренных случаях (кроме H₂O₂) в реакцию восстановления на германиевом электроде вовлекаются как свободные, так и валентные электроны. Дробные и не всегда постоянные значения у не позволяют, по-видимому, связать долю свободных и валентных электронов с какой-либо молекулярной схемой реакции. Вероятно, реакция одновременно протекает по двум путям, причем доля того и другого зависит в каждом отдельном случае от положения энергетического уровня, который занимают восстанавливающиеся ионы или молекулы, по отношению к энергетическим зонам полупроводника.

Неоднократно высказывалось мнение $(^1,^5)$, что меньшая скорость реакций восстановления на электродах из германия дырочного типа проводимости по сравнению с электронным германием объясняется меньшей концентрацией в дырочном материале свободных электронов, которые участвуют в катодных процессах. То обстоятельство, что восстановление $KMnO_4$ и K_3Fe $(CN)_6$ на германии p-типа не испытывает торможения, связано с тем, что эти реакции протекают в основном с участием валентных электронов. Предельный ток восстановления хинона, $K_2Cr_2O_7$ и H_2O_2 достигается на

наводороженном электроде с высокой скоростью поверхностной рекомбинации и поэтому не зависит от типа проводимости Ge. Большая величина перенапряжения на Ge *p*-типа по сравнению с *n*-типом объясняется, возможно, падением потенциала в обедненном свободными носителями поверхностном слое, возникающем при катодной поляризации дырочного полупроводника относительно раствора (8). Освещение электрода сопровождается генерацией свободных носителей и устраняет этот эффект.

В токе восстановления KJ_3 доля свободных электронов весьма велика (около 60%). Предельный ток этой реакции на германии p-типа в темноте (рис. 2,1) почти не зависит от перемешивания раствора и определяется скоростью

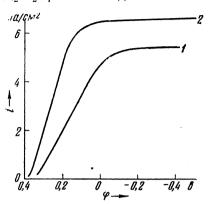


Рис. 3. Полярограммы восстановления KJ_3 $(2,07\cdot 10^{-2}\ N)$ на вращающемся дисковом электроде из германия p-типа: I — в темноте, 2 — при освещении. Скорость вращения электрода 440 об/мин

диффузии свободных электронов из глубины полупроводника к поверхности электрода, где они вступают в реакцию. На освещенном или предварительно наводороженном электроде свободные электроны в избытке генерируются, соответственно, светом или в слое с высокой скоростью рекомбинации, и скорость электродной реакции определяется более медленной стадией — диффузией ионов J_3 в растворе к поверхности электрода.

Полученные данные позволяют сделать некоторые заключения о механизме химического травления германия. Как правило, смеси для травления включают в себя окислители HNO_3 , H_2O_2 , J_2 , Br_2 , $K_2Cr_2O_7$ и др. (9). Возможно, восстановление многих окислителей на германии протекает с участием валентных электронов и является источником дырок, которые затем участвуют в растворении германия n-типа. Однако в случае H_2O_2 такой механизм не кажется вероятным.

Приношу глубокую благодарность проф. Б. Н. Кабанову за помощь при обсуждении результатов и И. Г. Ерусалимчику за предоставление электродов.

Институт электрохимии Академии наук СССР Поступило 10 IX 1959

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. H. Brattain, C. G. B. Garrett, Bell System Techn. J., 34, 129 (1955).

² H. Gerischer, F. Beck, Zs. phys. Chem., N. F., 13, 389 (1957).

³ Ю. В. Плесков, ДАН, 126, 111 (1959).

⁴ W. W. Harvey, H. C. Gatos, J. Appl. Phys., 29, 1267 (1958).

⁵ J. B. Flynn, J. Electrochem. Soc., 105, 715 (1958).

⁶ M. Green, Bkh. Modern Aspects of Electrochemistry, ped. J. O. Bockris, London, 2, 1959, стр. 396.

⁷ В. Г. Левич, Физико-химическая гидродинамика, М., 1959.

⁸ E. А. Ефимов, И. Г. Ерусалимчик, ДАН, 124, 609 (1959).

⁹ P. Wang, Sylvania Technologist, 11, 50 (1958).