
На рис. 2 представлена зависимость между адсорбцией катионов на угле A и lg концентрации соли в растворе.

Совсем иная картина получается для угля В. Адсорбция одновалентных катионов на этом угле больше адсорбции на угле А, причем разница в адсорбированных количествах особенно заметна при малых концентрациях, так, например, при концентрации 0,01 N адсорбция иона К возрастает в 1,5-2 раза. Адсорбция бария на угле В возрастает, примерно, в 8 раз по сравнению с адсорбцией бария на угле А и становится больше адсорбции одновалентных катионов. Адсорбция La" из растворов небольших концентраций больше адсорбции Ва", однако, с ростом концентрации адсорбция La" становится меньше адсорбции Ba" и К'. Адсорбция Th определялась только из раствора одной концентрации, и она оказалась равной адсорбции La

Результаты опытов с углем В приведены в табл. 2 и на рис. 3 и 4.

Таблица 2 Адсорбция на угле В

	Концентрация						
Электролит	0,01 N	0,05 N	0,1 N	0,5 N	1 N		
LiCI. NaCI KCI. CsCI TINO, BaCI, LaCI, ThCI,	0,025 0,024 0,029 0,036 0,071 0,058 0,041 0,068	0,064 0,065 0,073 0,092 0,106 0,106 0,070 0,088	0,085 0,086 0,091 0,122 0,116 0,116 0,084 0,103 0,108	0,1352 0,1067	0,113 0,121 0,123 0,135 0,114		

На рис. З и 4 представлена зависимость между адсорбцией одновалентных катионов и 1g концентрации. Адсорбция катионов на угле С возрастает по сравнению с адсорбцией на угле В.

Зависимость адсорбции ионов разной валентности от процента

обгара угля представлена на рис. 5.

По величине адсорбции на угле А катионы располагаются в такой ряд: K > Ba > La и Th. 54

АДСОРБЦИЯ КАТИОНОВ НА ПЛАТИНИРОВАННОМ УГЛЕ В АТМОСФЕРЕ ВОДОРОДА

С. Петров, Р. Бурштейн и Т. Киселева

В ряде работ нашей лаборатории было показано, что активированный уголь ведет себя в растворах электролитов как газовый электрод. В том случае, когда уголь насыщен кислородом, он приобретает в растворе положительный заряд и адсорбирует анионы из раствора электролита. Если же уголь содержит небольшие количества платины и насыщен водородом, он заряжается огрицательно и адсорбирует из раствора катионы.

В настоящей работе исследовалось влияние валентности и атомного веса катионов на адсорбцию их активированным углем в атмосфере водорода. Нами была исследована адсорбция следующих катионов из растворов их хлористых солей: лития, натрия, бария, кадмия,

лантана, тория и таллия из азотнокислого таллия.

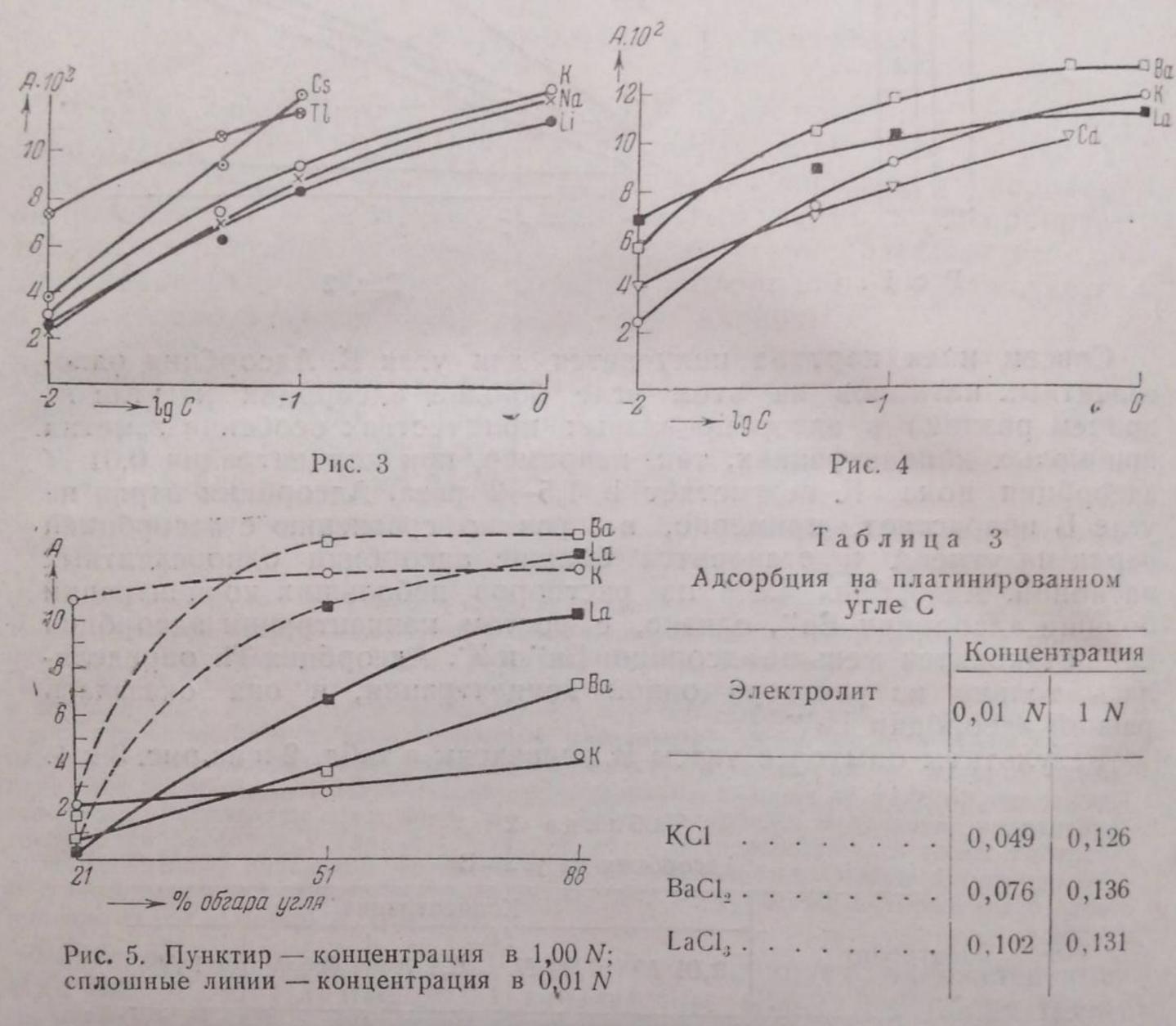
Все растворы были 0,01 N по отношению к HCl. Концентрация соли в растворе менялась от 0,01 до 1 N. Уголь, употреблявшийся в опытах, содержал 0,21/0 Pt. Уголь хранился в запаянных ампулах в атмосфере водорода. Опыты производились следующим образом. В сосуд А (рис. 1) всыпалось 0,5 г угля, затем наливалось 10 см3 раствора электролита. Прибор присоединялся посредством шлифа к установке для получения водорода. Через раствор в течение 3 час. пропускался водород. После этого прибор отпаивался в атмосфере водорода в С и f и взбалтывался в течение часа; 3 час. пуска водорода и 1 часа взбалтывания было вполне достаточно для установления адсорбционного равновесия, затем раствор отфильтровывался от угля посредством стеклянного фильтра d в шарик е, который затем отрезался от прибора. Количество адсорбированного катиона на угле определялось объемным титрованием растворов до и после адсорбции. В качестве индикатора применялся фенолрот. В случае титрования легко гидролизующихся солей употреблялся смешанный индикатор метилоранж с флуоресцеином². Опыты производились с углями различной степени активности 21, 51 и 88% обгара, которые мы в дальнейшем будем называть А, В и С.

Эти опыты показали, что уголь А адсорбирует одновалентные (Li', Na', K', Cs') лучше чем двувалентные (Ba''). Адсорбция трехвалентных (La''') и четырехвалентных катионов практически отсутствует. Результаты этих опытов приведены в табл. 1, где адсорбированное количество выражено в миллиэквивалентах на 1 г угля.

Таблица 1 Адсорбция на угле А

Электролит							1	Концентрация						
						0,01 N	0,05 N	0,1 N	0,5 N	1 N				
LiCI. NaCI KCI. CsCI BaCI ₂ LaCI ₃ ThCI ₄						4			0,012 0,016 0,021 0,028 0,008	0,042 0,048 0,053 0,079 0,017	0,057 0,062 0,072 0,107 0,017	0,103 0,017 0,002	0,100 0,107 0,110 0,017	

Для угля В и С при малых концентрациях адсорбция катионов возрастает с увеличением валентности K < Ba < La.


Из растворов больших концентраций на угле В последователь-

ность в адсорбции катионов несколько меняется Ва > К > La.

На угле С при больших концентрациях различия в адсорбции

катионов делаются очень незначительными.

Адсорбции аниона в этих случаях не было обнаружено. При адсорбции из растворов BaCl₂ и ThCl₄ концентрация хлора до и после адсорбции оставалась одинаковой.

Обсуждение результатов

С точки зрения электрохимической теории адсорбции электролитов, адсорбция катионов должна возрастать по мере увеличения валентности катиона. По данным ряда авторов³, слабо активированный уголь обладает большей внутренней поверхностью, но очень узкими порами. При адсорбции органических кислот на таком угле наблюдается обращение правила Траубе. С повышением активности происходит расширение пор. В случае адсорбции из растворов узкие поры угля мало доступны для крупных частиц адсорбирующегося вещества, тогда как для этих же частиц, при адсорбции на угле с большим процентом обгара, таких затруднений не существует. В случае адсорбции катионов их фактические размеры в растворе могут сильно отличаться друг от друга вследствие различной степени гидратации. Поэтому одновалентные катионы, которые обладают относительно небольшой гидратной оболочкой, а следовательно, небольшими размерами, могут проникать даже в узкие поры мало активного угля, в то время как двухвалентные катионы

(Ва"), а тем более трехвалентные La", обладающие большей гидратной оболочкой, неспособны проникать в узкие поры и вследствие этого они мало адсорбируются. На угле же с большим количеством пор с большим диаметром адсорбция ионов с большой гидратиой оболочкой резко возрастает.

Кольтгофф 4, измеряя адсорбцию анионов на активированном угле, нашел, что анионы адсорбируются в следующей последовательности: CI>SO4>PO4. Эти опыты были повторены Брунсом и Фрумкиным, и было показано, что на угле анионы адсорбируются в дру-

гой последовательности CI < SO4 < PO4.

Явление, которое наблюдал Кольтгофф, аналогично нашему наблюдению по адсорбции катионов на угле А и может быть объяс-

нено ультрапористой поверхностью угля,

Анализируя полученные экспериментальные данные со стороны влияния порядкового номера атома на величину адсорбнии, необходимо отметить, что одновалентные катионы адсорбируются на угле А и В в одной и той же последовательности, а именно, адсорбция возрастает с ростом порядкового номера.

Как видно из рис. 2 и 3, разница в величинах адсорбции для лития, натрия, калия невелика. Адсорбция таллия и цезия значительно возрастает по сравнению с указанными выше одновалентными

катионами.

Следует отметить, что изотермы адсорбции для большинства изученных одновалентных катионов имеют более крутой ход, чем изотермы адсорбции для двухвалентных, а тем более для трехвалентных.

Во всех рассмотренных случаях адсорбция катионов носит чисто электростатический характер, обусловленный образованием двой-

ного электрического слоя на границе раздела уголь/раствор.

Нами была сделана попытка рассчитать величины адсорбции для катионов разной валентности из растворов изученных концентраций, пользуясь теорией двойного слоя Штерна 5, и сравнить вычисленные данные с экспериментальными. Расчет производился без учета специфической адсорбции. Емкость двойного слоя угля была принята равной емкости для ртути. Поверхность 1 г угля была принята равной 500 м². Полный заряд внешней обкладки двойного слоя равен:

$$\varepsilon_{0} = \varepsilon_{1} + \varepsilon_{2} = -F\delta\left(c_{1}e^{-\frac{\gamma F}{RT}} + c_{2}e^{-\frac{\gamma F}{RT}} - c_{3}e^{\frac{\gamma F}{RT}}\right) - V\frac{RID}{2\pi}V\frac{1}{c_{1}}\left(e^{-\frac{\gamma F}{RT}} - 1\right) + c_{2}\left(e^{-\frac{\gamma F}{RT}} - 1\right) + c_{3}\left(e^{\frac{\gamma F}{RT}} - 1\right).$$

где c_1 и c_2 — концентрации ионов водорода, катиона соли и аниона, D — диэлектрическая постоянная, ν — валентность, ζ — дзета потен-

циал, F — число Фарадея.

Вычисление ζ потенциала производилось по способу, описанному Фрумкиным 6. Полная разность потенциалов между углем и раствором, рН которого равен 2, равна 0,089 (так как нулевая точка для угля соответствует потенциалу, приблизительно, -0,027). Емкость двойного слоя (K) - 19 μF на 1 cm^2 , $\delta = 3 \cdot 10^{-8}$.

Так как в случае адсорбции из раствора, содержащего смесь диффузной части слоя предстаэлектролитов, вычисление заряда вляет значительные трудности. мы прибегли к приближенному мераспределение ионов в гельмтоду расчета, приняв одинаковое

гольцевой и диффузной части слоя.

В этом случае заряд, обусловленный адсорбцией катионов соли, равен

$$\epsilon_{k} = \epsilon_{0} \frac{c_{z}e^{-\frac{\sqrt{F}}{RT}}}{c_{1}e^{-\frac{\sqrt{F}}{RT}} + c_{z}e^{-\frac{\sqrt{F}}{TR}} - c_{z}e^{\frac{\sqrt{F}}{RT}}}$$

или для адсорбции получаем:

$$\Gamma = \frac{\varepsilon_k S}{F}$$
.

Вычисленные таким путем адсорбции катионов из растворов различных концентраций КСІ, ВаСІ, и LаСІ, приведены в табл. 4. Вычисленные данные сравнивались с результатами для угля В.

Таблица 4

		KCI			BaCl ₂		LaCl ₃			
	Гэкс	4	Гемч	$\Gamma_{\partial KC}$		Гвыч	Гэкс	-4	Гент	
0,01 0,05 0,1	0,029 0,073 0,091	0,0275 0,0175 0,0129	0,031 0,073 0,098	0,058 0,106 0,116	0,035 0,014 0,010	0,046 0,083 0,105	0,068 0,088 0,103	0,0183 0,118 0,010	0,057 0,098 0,107	

Как видно из табл. 4, значения, полученные для адсорбции катионов по теории Штерна, удовлетворительно сходятся с экспериментальными данными.

Выводы

Измерена адсорбция одно-, двух-, и трехвалентных катионов на платинированном угле в атмосфере водорода. Показано, что на сильно активированном угле катионы адсорбируются в следующей последовательности: К' < Ва" < La", в то время как на слабо активированном угле катионы адсорбируются следующим образом: К' > Ва" > La".

Полученные результаты сравнивались с данными для адсорбции, вычисленными по теории Штерна.

Выражаем благодарность академику А. Н. Фрумкину за предложение темы и помощь при обсуждении результатов.

Москва Физико-химический институт им. Л. Я. Карпова Лаборатория поверхностных явлений

Поступило в редакцию 20 февраля 1939 г.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. B. Bruns u. A. Frumkin, Z. physik. Chem., 141, 141, 1929; A. Frumkin, Koll. Z., 51, 123, 1930.
- 2. R. Burstein, Acta Physicochimica URSS, 7, 311, 1937.
 3. Bruns u. Zarubina, Koll. Z., 64, 279, 1933, Dubinin u. Saverina, Acta Physicochimica URSS, 4, 647, 1936.
- 4. Kolthoff, Rec. Trav. Chim. Bas., 46, 549, 1927.
- Z. Elektroch., 30, 508, 1924.
 Z. physik. Chem., 164, 121, 1933.