Доклады Академии наук СССР 1958. Том 122, № 6

ФИЗИЧЕСКАЯ ХИМИЯ

И. Г. КИСЕЛЕВА и Б. Н. КАБАНОВ

ОБ ОБРАЗОВАНИИ И ЭЛЕКТРОХИМИЧЕСКИХ СВОЙСТВАХ КРИСТАЛЛИЧЕСКИХ МОДИФИКАЦИЙ ДВУОКИСИ СВИНЦА

(Представлено академиком А. Н. Фрумкиным 10 VI 1958)

Явление полиморфизма для случая двуокиси свинца описано в ряде работ ($^{1-5}$). Установлено, что PbO₂ существует в двух модификациях: тетрагональной (β -форма) и ромбической (α -форма). Возникновение той или другой модификации двуокиси свинца зависит от условий ее получения. Так, α -форма получается анодным осаждением из нейтральных или щелочных растворов солей свинца, окислением PbSO₄ в разбавленных растворах H_2SO_4 и превращением из β -формы под давлением; β -форма — окислением PbSO₄ в крепких растворах H_2SO_4 .

Анализ имеющихся данных показывает, что условия получения α- или β-формы при нормальном давлении различаются, в сущности, тем, что образование PbO₂ идет при наличии или в отсутствие H₂SO₄. Поэтому можно было предположить, что получение разных кристаллических форм связано с адсорбцией серной кислоты, которая, как показано ранее, удерживается на PbO₂ очень прочно и в больших количествах (⁶).

Для подтверждения этого предположения мы провели сравнительные измерения адсорбционной способности и исследование структуры электродов из PbO_2 , полученных в различных условиях. Результаты приводятся в табл. 1. Адсорбционные измерения производились радиохимическим методом по изменению активности электродов; исследование структуры — рентгенографическим методом *. Исходные электроды из PbO_2 получались в виде гладкого осадка на золоте из $15\,\%$ -го раствора $Pb(NO_3)_2$ при плотности тока $2\cdot 10^{-4}$ а/см².

В соответствии с литературными данными, осадки, полученные нами из нейтрального раствора или окислением PbSO₄ в 0,01 N H₂SO₄, состояли в основном из α -PbO₂. В результате электрохимической рекристаллизации электрода в 8 N H₂SO₄, а именно, катодного восстановления до PbSO₄ с последующим анодным окислением до PbO₂ происходит необратимая адсорбция H₂SO₄ на PbO₂ и превращение α -PbO₂ в β -PbO₂ **. Величина адсорбции в 8 N H₂SO₄ составляет от $6 \cdot 10^{-8}$ до $40 \cdot 10^{-8}$ М/см² в зависимости от толщины слоя PbO₂. Адсорбированная H₂SO₄ может быть удалена из осадка PbO₂ при помощи вытеснения ее с электрода адсорбирующимся кобальтом (6). Был проведен рентгеноструктурный анализ двуокиси свинца, которая после осаждения ее из 8 N H₂SO₄ в течение 10—15 час. анодно поляризовалась в растворе 8 N H₂SO₄ +5% CoSO₄. Оказалось, что десорбция H₂SO₄ сопровождается превращением β -PbO₂ в α -PbO₂.

Относительно природы адсорбции H₂SO₄ на PbO₂ можно сделать пред-

^{*} Мы выражаем глубокую благодарность З. В. Семеновой за выполнение рентгено-

структурного анализа образцов двуокиси свинца.

** Следует отметить, что в чистом виде ни одна из модификаций в этих условиях не получается. Во всех случаях мы имели смесь обеих кристаллических форм, но из нейтрального раствора осаждается смесь, в основном состоящая из α-формы, а из кислого — β-формы. Эти осадки мы условно называем соответственно α-PbO₂ и β-PbO₂.

положение, что поглощение H_2SO_4 происходит в объеме электрода на интеркристаллической поверхности. Об этом свидетельствуют большая величина адсорбции и зависимость ее от толщины слоя PbO_2 (табл. 1). Кроме того,

Т	а	б	л	и	п	а	1
1	и	\circ		11	44	и	

		Толщ. слоя PbO ₂ в μ	Адсорбция H ₂ SO ₄ в молях			
РьО яз раствора	Форма РbO ₂		М/см² на вид. по- верхн.	<i>М</i> /см ⁸	М/см² на интеркрист. поверхн.	
Pb(NO ₃) ₂ 0,01N H ₂ SO ₄ 8N H ₂ SO ₄ 8N H ₂ SO ₄ 8N H ₂ SO ₄ + + CoSO ₄	$\begin{array}{c} \alpha \\ \alpha \\ \beta \\ \beta \end{array}$ $\beta \rightarrow \alpha$	2—30 20 2 20 Намазной электрод	$\begin{array}{c c} - & - & \\ 0, 0_1 \cdot 10^{-8} \\ 6 \cdot 10^{-8} \\ 40 \cdot 10^{-8} \end{array}$	— 3·10-4 2·10-4 Десорбц	— 3·10 ⁻¹¹ 2·10 ⁻¹¹ ия (⁶)	

установлено, что заметная необратимая адсорбция происходит лишь в процессе образования PbO_2 из $PbSO_4$, и не наблюдается при длительной анодной поляризации PbO_2 в H_2SO_4 *. Это, по-видимому, означает, что серная кислота адсорбируется не на готовом осадке двуокиси свинца, а в процессе его образования **. Интересно отметить, что в 8 N H_2SO_4 кристаллы PbO_2 получаются в 100 раз более

получаются в 100 раз более мелкими (по линейным размерам), чем в растворах Pb(NO₃)₂ или 0,01 N H₂SO₄. Это можно объяснить известным явлением затруднения роста кристаллов благодаря хемосорбции.

Известно, что с изменением кристаллической модификации происходит изменение ряда свойств вещества. В связи с этим представляло интерес сравнить электрохимическое поведение α- и β-PbO₂. Для этого на гладких электродах из PbO₂ тетрагональной и ромбической модификаций были измерены ско-

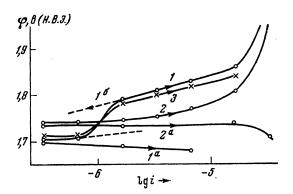


Рис. 1. Кривые перенапряжения. $\it 1$ и $\it 1a$ — $\it \alpha$ -PbO $_2$ из раствора Pb (NO $_3$) $_2$, $\it 2$ и $\it 2a$ — $\it \beta$ -PbO $_2$ из $\it 8$ $\it N$ H $_2$ SO $_4$, $\it 3$ — $\it \alpha$ -PbO $_2$ из $\it 8$ $\it N$ H $_2$ SO $_4$ + $\it 5$ % CoSO $_4$

рости анодного образования PbO_2 из $PbSO_4$ и катодного восстановления PbO_2 . Измерение скорости этих реакций производилось путем снятия кривых перенапряжения в $8\ N\ H_2SO_4$. Для измерения перенапряжения электрод частично разряжался, т. е. часть PbO_2 переводилась в $PbSO_4$. Кривые, изображающие зависимость φ — $lg\ i$ для двух разных модификаций PbO_2 , представлены на рис. 1^{***} . Анодные кривые, снятые быстро и при малых плотностях тока, а также катодные кривые, идут параллельно друг другу со смещением на 30—40 мв. Ток обмена на обеих модификациях почти одинаков. Ход кривых определяется отклонениями величины кон-

** Поглощение H_2SO_4 нельзя объяснить тем, что H_2SO_4 образует с PbO_2 стехиометрическое соединение (7), так как при этом количество поглощенной H_2SO_4 должно было бы

быть на два порядка больше, чем на опыте.

^{*} В присутствии в растворе $CoSO_4$ изменение кристаллической модификации и адсорбии H_2SO_4 при непрерывной анодной поляризации могут быть объяснены рекристаллизацией, протекающей по схеме β - PbO_2 - $PbSO_4$ - α - PbO_2 . Процесс этот ускоряется в присутствии $CoSO_4$ из-за снижения перенапряжения кислорода и, следовательно, приближения потенциала электрода к равновесному. Возможно также, что главную роль играет премиущественное восстановление β - PbO_2 , происходящее за счет выделения кислорода.

^{***} Все кривые сняты на одном и том же электроде в порядке их нумерации.

центрации $PbSO_4$ у поверхности электрода от величины концентрации насыщения. Однако на α - PbO_2 в области плотностей тока 10^{-6} — $3\cdot10^{-6}$ а/см² перенапряжение анодного процесса при одной и той же плотности тока растет во времени, повышаясь, примерно, на 80 мв. Поэтому сравнительно медленно (в течение 3-4 час.) снятая кривая имеет аномальный вид (рис. 1,1) и при обратном порядке измерения, от больших плотностей тока к меньшим, наблюдается гистерезис (пунктир, кривая 16). После анодной поляризации PbO_2 в течение 10-15 час. в $8NH_2SO_4 + CoSO_4$, при которой происходит десорбция H_2SO_4 и β - PbO_2 превращается в α - PbO_2 , окисление $PbSO_4$ оказывается замедленным и кривая перенапряжения (рис. 1,3) идет почти так же, как на α - PbO_2 , полученном из нейтрального раствора.

Замедленность процесса окисления $PbSO_4$ на α - PbO_2 в 8 N H_2SO_4 , вероятно, связана с затруднением процесса электрокристаллизации (9), ко-

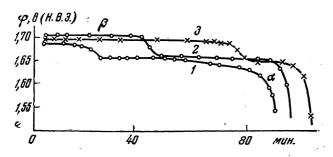


Рис. 2. Восстановление PbO₂ (разрядные кривые). 1-25% β -PbO₂, 2-50% β -PbO₂, 3-75% β -PbO₂

торое можно объяснить адсорбцией H₂SO₄. Известно, что анодное окисление ионов Pb^{2+} в 8 N H_2SO_4 приводит к образованию β - PbO_2 . Если электродом является PbO2 той же модификации, то процесс электрокристаллизации идет легко, так как продолжается рост имеющейся кристаллической решетки (10). В случае же электрода из α-PbO₂, на котором еще не успела адсорбироваться H_2SO_4 , на активных точках легко образуется осадок α-PbO₂. Постепенію число активных мест уменьшается, вероятно, из-за специфической адсорбции H₂SO₄ (которая происходит медленно), из-за чего постепенно прекращается выделение α-РbO₂. После этого, уже при повышенном перенапряжении, может образовываться только β-PbO₂. В этом случае повышение перенапряжения обусловлено не только образованием осадка на поверхности, которая является чужеродной по отношению к образующейся PbO₂, но и адсорбцией на этой поверхности серной кислоты. Поэтому скорость процесса после получения первых порций осадка не увеличивается, как этого следовало бы ожидать. По-видимому, достигнутое повышение потенциала способствует весьма большой специфической адсорбции H_2SO_4 , которая затрудняет рост образующихся зародышей PbO_2 , и процесс продолжает идти с замедленной скоростью.

Судя по кривым 1a, и 2a (рис. 1) при данном потенциале восстановление α -PbO2 идет с несравненно меньшей скоростью, чем β -PbO2. В соответствии с этим, при разряде электрода, состоящего из смеси обеих модификаций PbO2, на разрядной кривой потенциал — время появляются две задержки, различающиеся по величине потенциала, приблизительно, на 30 мв (рис. 2). Исходным материалом для получения таких электродов служила α -PbO2, осажденная из нейтрального раствора Pb(NO3)2, или из 0,01 N H2SO4. Частичным восстановлением PbO2 с последующим окислением образовавшегося PbSO4 в 8 N H2SO4 соответствующая часть α -PbO2 превращалась в β -PbO2. Длина первой площадки определяется количеством β -PbO2. В случае кривых 1, 2 и 3 на рис. 2 частичный предварительный разряд α -PbO2 составлял соответственно 25, 50 и 75% емкости.

Аналогичное явление наблюдалось в опытах Рючи и Қаган (1). Однако **авторы** склонны были объяснить его как различием потенциалов разряда α -PbO₂ и β -PbO₂, так и явлениями пассивации. Бэрбанк (5) пришел к выводу о замедленности разряда α -PbO₂ на основании того экспериментального факта, что в продуктах коррозии свинца, покрытого смесью α -PbO₂ и β -PbO₂, наряду с PbSO₄ обнаруживается α -PbO₂.

Таким образом, проведенное исследование позволяет считать, что причиной замедления процесса $PbO_2 \rightarrow PbSO_4$, а также образования β -формы является химическая адсорбция серной кислоты на поверхности PbO_2 . Влияние адсорбции H_2SO_4 на скорость другого анодного процесса на PbO_2

(выделение кислорода) было уже установлено ранее (8).

В заключение следует отметить, что дальнейшее изучение условий возникновения различных модификаций двуокиси свинца и их свойств представляет практический интерес. Так, на примере осадков двуокиси свинца на золоте мы наблюдали значительную разницу в механической прочности между осадками α -PbO2 и β -PbO2. Кроме того, известно, что твердость у PbO2 из $8~N~H_2SO_4$ меньше, чем у PbO2 из $0.1~N~H_2SO_4$ (11). Следовательно возможно, что так называемое «оползание» активной массы положительного электрода в свинцовом аккумуляторе связано с понижением прочности за счет превращения α -PbO2 в β -PbO2 в процессе циклирования (3).

Институт] электрохимии Академии наук СССР Поступило 10 VI 1958

ЦИТИРОВАННАЯ: ЛИТЕРАТУРА

¹ М. Катауата, Т. Fukumoto, J. Soc. Chem. Japan, 49, 155 (1946).

² А. И. Заславский, Ю. Д. Кондрашов, С. С. Толкачев, ДАН, 75, 559 (1950).

³ Н. Воdе, Е. Voss, Zs. f. Electrochem., 60, 1053 (1956).

⁴ P. Rüetschi, B. D. Cahan, J. Electrochem. Soc., 104, 406 (1957).

⁵ J. Burbank, A. C. Simon, J. Electrochem. Soc., 100, 11 (1953).

⁶ И. Г. Киселева, Б. Н. Кабанов, ДАН, 108, 864 (1956).

⁷ R. Von Копоw, Tekn. Fören. Finl. Förhand., 74, № 12, 257 (1954).

⁸ Б. Н. Кабанов, И. Г. Киселева, Д. И. Лейкис, ДАН, 99, 804 (1954).

⁹ М. Fleischmann, Н. R. Thirsk, Trans. Farad. Soc., 51, 71 (1955).

¹⁰ П. Д. Данков, Тр. 2-й конфер. по коррозии металлов, 1943, стр. 121.

¹¹ Д. И. Лейкис, Е. К. Венстрем, ДАН, 112, 971 (1957).