lonic association: harmful and useful manifestations

Galina Tsirlina

CENN Nanocenter, Ljubljana, Slovenia

Early development: Arrhenius-Ostwald dissociation concept, ion pairs vs. ionic atmosphere
Spectroscopic evidence of ion pairs; conductivity and ion pairs; redox potentials and ion pairs
Bjerrum and Fouss Equations, limitations

lon pairs as the intermediate species in redox reactions

lonic association at the interfaces in respect to electrochemical reactions

Possible manifestations in electrocatalysis



Arrhenius concept of ionic dissociation assumed that ion pairs (non-
dissociated electrolyte) are ‘inactive’

Arrhenius,
Z. phys. Chem.
1(1887) 631

<1900 translation>

Ostwald’s ‘law of dilution’ K

In a former communication ‘“ On the Electrical Conductivity
of Electrolytes,” I have designated those molecules whose ions
are independent of one another in their movements, as active ;
the remaining molecules, whose ions are firmly combined with

one another, as inactive. I have also maintained it as probable,
that in extreme dilution all the inactive molecules of an elec-
trolyte are transformed into active.t This assumption I will
make the basis of the calculations now to be carried out. I
have designated the relation between the number of active
molecules and the sum of the active and inactive molecules,
as the activity coefficient. The activity coefficient of an

electrolyte at infinite dilution is therefore taken as unity. For
smaller dilution it is less than one, and from the principles
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Later development (Debye-Hiickel): ionic atmosphere effects, which include
ion pairs formation
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Qualitatively, one can judge about ion pairs formation from
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Qualitatively, one can also judge from
Walden product




Observation of the second association step in conductivity vs concentration

dependence
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Direct observation of ion pairs in dielectric spectra
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Observation of ion pairs in NMR spectra
19F NMR in LiBF, solutions
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Redox potentials determined by association constants

K+ 4+ Fe(CN)¢t— — KFe(CN)g*— Temperature, °C 9.9 15.0 25.0 35.0 40.0 45.0
Equilibrium 1
K+ 4+ Fe(CN)s— —— KFe(CN)2~ (1.00 X 102 M 88.9 94.0 101 102 103
KFe(CN)s)
Equilibrium 2
Small spherical - (1.25 X 103 M 16.1 18.2 17.6 18.6 18.9
aso- ions e : K;Fe(CN))
o Ionie
'_,cr' [KsFe(CN)s] [Free Kt] strength Log K°®
,n"'d' X 10-3 X 10- K X 10-* (eq 4)
Aoor /.__,,,....----------.....f,,_____ 1.00 2.95 19.4 5.84 1.50
%‘ F&:":“-ﬂ- Tetra alkyl h 1.25 3.67 17.6 7.27 1.48
z #LN.‘:@..,“_“ AMMORiUM ions 2.00 5.84 14.6 11.5 1.45
5ok ) -..,__L‘ “eel e 2.50 7.27 14.3 14.3 1.46
.. ""‘“..‘n“" 5.00 14.3 10.8 28.0 1.44
~~~~~~ W g Mean 1.46 == 0.02
d '*‘.A'..
00|~ e
. | J. Phys. Chem. 71 (1967) 2016; 2022
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Attempts of quantitative description of association constants K, = —b“’
antayxe

Raymond M. Fuoss (1905-1987)

Niels J. Bjerrum
(1879-1958)
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purely electrostatic models (no specific bonding)

continuum model of solvent
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Cationic catalysis, formal “geometric” consideration

n K =1In K, —
" N T RTd,
{
In K=a—bh—
'dh!ll

Table 1 Second-order rate constants (K/107* I mol ™! s™1) for the

reaction of $,05*~ with I~ at 25 °C

J. Chem. Soc.

Faraday Trans.
1995, 91, 1345

I/mol 171
alkali-metal iodide 0.165 0.115 0.075 0.1°
Lil 4.30 271 2.17 243
MNal 4.55 3.07 2.41 2.84
Kl 6.85 4.70 3.45 4.12
Rbl 1.75 5.52 4.38 —_
Csl 9.15 6.87 545 —

For more realistic consideration, non-spherical
shape and inhomogeneous charge distribution
should be addressed.



Cationic catalysis of electrochemical

reactions: anions reduction at the
negatively charged surface
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J. Electroanal. Chem. 552 (2003) 261;

Cationic catalysis of electrochemical reactions 582 (2005) 118

“local” ion pair ion pair “from the bulk”
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Ulee (P, 2,%1) = Gaqs - Plp.2,31) lon pairs with sodium and with cesium



Cationic catalysis of electrochemical reactions, polyoxometalate challenge

[CeVW10036]° +e = [Ce'Wq0036]7"

I WA positively ' negatively
3 charge surface | charge surface

| Challenge: why reaction
rate increases with ionic
strength for attractive
interaction as well?
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Polyoxometalate anions, multistep ionic association
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Polyoxometalate challenge: the answer is adsorption of ionic associates

. \
~ > Answer from STM and XAS: very
'__\_ high surface coverage for

X X polyoxometalates, only weakly
affected by surface charge

“" J. Amer. Chem. Soc. 123 (2001) 8838
Answer from IR spectra of adsorbates: o
very strong polyoxometalate-surface
bonding via external oxygens

J. Phys. Chem. B. 108 (2004) 1974

Enormous Coulomb repulsion
of the multicharged anions is

Answer from low-temperature only possible if many cations
TEM of gold colloid particles are co-adsorbed.
stabilized by polyoxometalate

J. Amer. Chem. Soc. 131 (2009) 17412




The shift of redox potentials easily discovers ion pairs formation

OX +C < [Ox- (] From AEp analysis, B :[Ox+ e~ — Red
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Currently going mainstream: cations effects in electrocatalysis

Hydrogen evolution Oxygen reduction Oxygen evolution
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Hypotheses under discussion can be roughly separated into two groups

Group 1: effects on water (on its dissociative adsorption, stability, orientation at the surface,

J. Chem. Phys. 151 (2019) 160902

(A) OH-Water Interaction (B) Activating H,0
Dissociation
.
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Group 2: ionic association with reactants or intermediate species (e.g., CO,*~, O

CO,(g) + 6™+ " — *CO,

*CO,” +M* = *CO, - M*

*CO, —M* + H,0 - "COOH + M" + OH"

*COOH + e — "CO + OH"

*CO — CO(g) + *

&

\
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Nature Catal. 4 (2021) 654-662

¢

(C) Positioning and
Orienting H,0

Y

(D) Altering Solvent
Reorganization

t(cation)

and mutual orientation)

For both groups, and for the choice
between them, cations localization is

crucial:
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for Cs*, K*
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Contrary to reactions mentioned above,
electrocatalytic reactions assume typical :
location of reaction layer directly at the surface. & G,i .
This allows application of the same molecular .
modeling techniques, but makes permittivity
uncertainties even more essential.
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