Доклады Академии наук СССР 1961. Том 140, № 2

ФИЗИЧЕСКАЯ ХИМИЯ

Б. Б. ДАМАСКИН и Ю. М. ПОВАРОВ ЕМКОСТЬ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ В N-МЕТИЛФОРМАМИДЕ

(Представлено академиком А. Н. Фрумкиным 27 VI 1961)

Емкость двойного слоя в неводных растворителях изучалась в ряде работ $(^{1-6})$. В качестве растворителей в цитируемых работах использовались алифатические спирты, диэлектрическая постоянная которых заметно ниже, чем у воды. Этим, по-видимому, можно было объяснить снижение емкости двойного слоя при переходе от водных растворов к спиртовым (1, 3, 4). $\mathcal L$ ругой особенностью зависимости дифференциальной емкости (C) от потенциала электрода (ф) в растворах алифатических спиртов является отсутствие характерного горба, который в водных растворах наблюдается вблизи точки нулевого заряда (т. н. з.). Согласно (7), горб на $C - \phi$ кривых обусловлен максимумом эффективной диэлектрической постоянной слоя адсорбированных диполей растворителя, и его отсутствие в растворах СН₃ОН или С₂Н₅ОН может быть связано либо с более прочной ориентацией молекул спирта на поверхности ртути, которая лишь незначительно меняется под действием поля двойного слоя, либо с более низкими температурами замерзания спиртов; поэтому данные по емкости в CH₃OH и C₂H₅OH при 25° следует сопоставлять с $C - \phi$ кривыми, измеренными в воде при более высокой температуре (1, 8).

В настоящей работе методом импедансного моста (9) были измерены $C - \varphi$ кривые на ртутном капельном электроде в растворах различных солей в N-метилформамиде, диэлектрическая постоянная которого значительно больше, чем у воды ($D=182,4~(^{10})$). Потенциалы приводятся против нормального каломельного электрода, соединенного с ячейкой через склянку с насыщенным раствором КСІ в воде. Продажный НСОNНСН3 2 раза перегонялся в вакууме ($\sim 1~$ мм Hg), а затем обрабатывался СаО и отгонялся в вакууме. Последняя операция повторялась 2 раза. После этого НСОNНСН3 перегонялся под пониженным давлением в атмосфере азота через ректификационную колонку. Полученный таким образом N-метилформамид имел удельную электропроводность $2-4\cdot10^{-7}~$ ом $^{-1}\cdot$ см $^{-1}~$ при 20° , температуру замерзания $-3,4^{\circ}$ и показатель преломления $n_D^{20}=1,4300$. Приготовленные растворы перед измерением емкости подвергались катодной поляризации на ртути в атмосфере водорода током $1-6\cdot10^{-5}~$ a/cм 2 в течение 20~4ас.

Полученные данные приведены на рис. 1-4*. Как видно из рисунков, емкость двойного слоя в N-метилформамиде в общем случае оказывается меньше, чем в воде. Так, в $0,1\ N$ КСl при $\phi=-1,8$ в $C=8,8\ \mu F/cm^2$, а при $\phi=-0,6$ в $C=13,9\ \mu F/cm^2$. Так как т. н. з. в данном растворе равна $-0,41\ B^{**}$, то отмеченные потенциалы соответствуют отрицательно заряженной поверхности ртути. Поэтому одной из причин уменьшения емкости по сравнению с водными растворами может являться увеличение радиуса сольватированного катиона при переходе от H_2O к HCONHCH3. С другой стороны, малые величины емкости двойного слоя в N-метилформамидных растворах указывают на значительно меньшую величину эффективной диэлектрической постоянной в поверхностном слое, чем в объеме раствора $\binom{11}{2}$.

При положительных зарядах поверхности наблюдается резкий подъем

^{*} Емкость двойного слоя во всей иссследованной области потенциалов не зависит от частоты переменного тока, которая изменялась нами от 400 до $10\,000$ гц. Приведенные данные получены при частоте 400 гц.

^{**} Т. н. з. была определена по максимуму электрокапиллярной кривой в растворе 0,1 N KCl в N-метилформамиде.

емкости, связанный со специфической адсорбцией анионов Cl^- . Как и в в случае водных растворов (12), адсорбируемость анионов возрастает в ряду: $Cl^- < Br^- < J^-$, и восходящая ветвь на $C - \phi$ кривой сдвигается к более отрицательным потенциалам (рис. 1). В присутствии катиона Cs^+ аналогичный подъем на $C - \phi$ кривой наблюдается при сильно отрицательных поля-

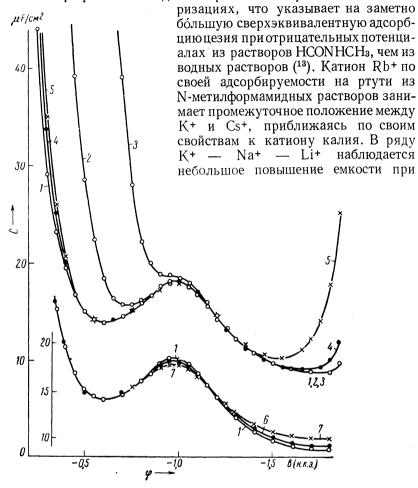


Рис. 1. Кривые дифференциальной емкости в N-метилформамиде при 25° в 0,1 N растворах: I — KCl, 2 — KBr, 3 — KJ, 4 — RbCl, 5 — CsCl, 6 — NaCl, 7 — LiCl

потенциалах отрицательнее -1,2 в и небольшое ее понижение в области максимума на $C - \phi$ кривой (рис. 1). Это явление, которое не имеет места ни в водных (13, 14), ни в спиртовых (4, 5) растворах, требует дальнейшего исследования.

При разбавлении растворов двойной слой становится более диффузным и емкость вблизи т.н.з. уменьшается (рис. 2a). Однако уменьшение емкости в N-метилформамидных растворах заметно меньше, чем в воде при тех же концентрациях электролита. Этот результат связан с тем, что емкость плотного слоя ($C_{\rm r}$) в N-метилформамиде меньше, чем в воде, а емкость диффузного слоя ($C_{\rm r}$) больше (за счет более высокой диэлектрической постоянной). Поэтому при последовательном соединении $C_{\rm r}$ и $C_{\rm g}$ емкость диффузного слоя, являющаяся функцией концентрации, оказывает меньшее влияние на общую дифференциальную емкость в N-метилформамиде, чем в воде.

Характерной особенностью C— ϕ кривых в N-метилформамиде является наличие максимума (горба) при потенциалах — 0,95 — 1,05 в. Температурная зависимость емкости в максимуме на C— ϕ кривой, при-

веденная на рис. 3*, позволяет предположить, что горб на кривых емкости в растворах HCONHCH₃ имеет ту же природу, что и в случаеводных растворов, т. е. связан с изменением ориентации диполей растворителя (¹⁵). Значительно-

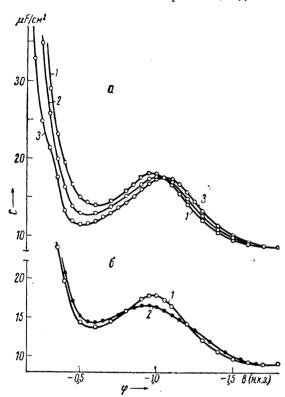


Рис. 2. Кривые дифференциальной емкости в N-метилформамиде при 25°. a — в растворах KCl: I — 0,1 N, 2 — 0,03 N, 3 — 0,01 N; δ — в растворах: I — 0,1 N NaCl, 2 — 0,1 N NaCl + 10^{-3} N [(C₄H₉)₄N] В1

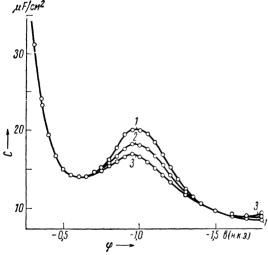


Рис. 3. Кривые дифференциальной емкости в 0,1 N KCl в N-метилформамиде при температурах: $1-0^\circ$, $2-25^\circ$, $3-50^\circ$

меньший температурный коэффициент емкости в N-метилформамиде по сравнению сводными растворами (8,15) может быть объяснен более прочной адсорбцией на поверхности ртути диполей НСОННСН3. К этому выводу приводит низкое значение пограничного натяжения в N-метилформамидных растворах (в 0,1 N KCl $\sigma_{\text{макс}}$ = =382,0 дин/см), а также данные по емкости, полученные нами в растворе 0.1 N NaCl+ $+10^{-3} N [(C_4 H_9)_4 N] Br (puc.26)$. В последнем случае, как видно из рис. 2,6, прочно связанные с поверхностью молекулы HCONHCH₃ препятствуют адна ртути катионов сорбции $[(C_4H_9)_4 N]^+$, при наличии кокак известно $(^6,^{16}),$ торой, емкость двойного слоя снижается до $4-5 \mu F/cm^2$.

Поскольку горб на $C - \varphi$ кривых в N-метилформамидных растворах соответствует отрицательным зарядам поверхно-И так как молекулы HCONHCH₃ прочно адсорбированы на поверхности ртути, то влиянием специфической адсорбции на ориентацию диполей растворителя (15) в области потенциалов горба можно пренебречь. Таким образом, развивая представления работы (7), можно предположить, что горб на $C - \phi$ кривых в N-метилформамидных растворах обусловлен максимумом эффективной диэлектрической постоянной слоя адсорбированных молекул HCONHCH₃. Однако в данном случае минимальное диэлектрическое насыщение не соответствует т. н. з., что можно объяснить преимущественной ориентаци-HCONHCH₃ молекул при которой т. н. з., отрицательный конец диполя

^{*} При $t>50^\circ$ HCONHCH3 начинает заметно разлагаться, что не позволило нам провести измерения емкости при более высоких температурах.

обращен к поверхности ртути. При таком объяснении горб на C— ϕ кривых не должен практически зависеть от природы электролита, что находится в согласии с экспериментальными данными, приведенными на рис. 1.

Небольшие добавки воды к N-метилформамидным растворам практически не изменяют формы C— ϕ кривой. При большом содержании воды происходит

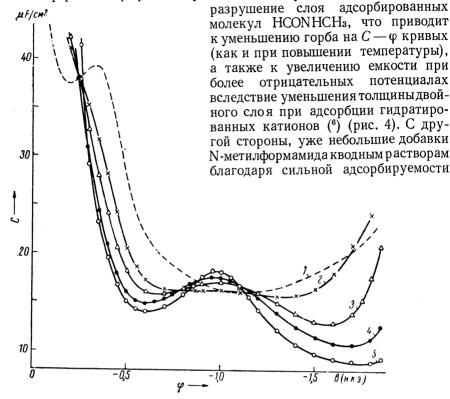


Рис. 4. Кривые дифференциальной емкости в 0,1 N KCl в смесях воды и N-метилформамида при 25°, добавка N-метилформамида (в мол. %): 1-0, 2-3,3, 3-11,6, 4-31,4, 5-100

на поверхности ртути разрушают слой адсорбированных диполей воды, что приводит к полному исчезновению горба на $C - \varphi$ кривых в водных растворах так же, как это имеет место при повышении температуры (8, 15).

Приносим искреннюю благодарность акад. А. Н. Фрумкину за исключительное внимание к работе и обсуждение экспериментальных данных.

Московский государственный университет им. М. В. Ломоносова

Поступило 27 VI 1961

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ D. C. Grahame, Zs. Elektrochem., **59**, 740 (1955). ² В. Л. Хейфец, Б. С. Красиков, В. В. Сысоева, И. В. Гусева, Вестник ЛГУ, сер. физ. и хим., № 22, 128 (1956); № 22, 148 (1957). ³ А. А. Моиssa, Н. М. Sammour, Н. А. Сhаly, J. Chem. Soc., **1958**, 1269; Egypt. J. Chem., **1**, 165 (1958). ⁴ S. Minc, J. Jastrzebska, Roczn. chem., **31**, 735 (1957); ДАН, **120**, 114 (1958); J. Electrochem. Soc., **107**, 135 (1960). ⁵ S. Minc, M. Brzostowska, Roczn. chem., **34**, 1109 (1960). ⁶ П. А. Кирков, ЖФХ, **34**, 2375 (1960); ДАН, **135**, 651 (1960). ⁷ R. J. Watts-Tobin. Philos. Mag., **6**, № 61, 133 (1961). ⁸ D. C. Grahame, J. Am. Chem. Soc., **79**, 2093 (1957). ⁹ D. C. Grahame, J. Phys. Chem., **61**, 701 (1957). ¹⁰ G. R. Leader, J. F. Gormley, J. Ат. Сhem. Soc., **73**, 5731 (1951). ¹¹ А. Н. Фрумкин, Zs. phys. Chem., **103**, 43 (1923). ¹² М. А. Ворсина, А. Н. Фрумкин, ЖФХ, **19**, 171 (1945). ¹³ А. Н. Фрумкин, Б. Б. Дамаскин, Н. В. Николаева-Федорович, ДАН, **115**, 751 (1957); **121**, 129 (1958). ¹⁴ D. C. Grahame, J. Electrochem. Soc., **98**, 343 (1951). ¹⁵ Б. Б. Дамаскин, Е. Шварц, А. Н. Фрумкин, ДАН (в печати); ЖФХ (в печати). ¹⁶ Б. Б. Дамаскин, Н. В. Николаева-Федорович, ЖФХ, **35**, № 6 (1961).