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A NUMBER of problems of heat transmission with non-linear heat exchange conditions 

at the phase separation boundary [ 1, 21, and also mass transfer processes accompanied 

by surface tr~sfo~ations of the transferred matter (for example, as the result of 

adsorption, surface reaction, an electrodynamic transformation etc.), lead to a non- 

linear Volterra integral equation of the second kind with an integrable singularity in the 

kernel 

where f 0) is given non-linear function, JC (x, t) 1 tzx # 0. 

A standard method of successive approximations can be used to construct the 

solution of Eq. (1). However, for a fairly wide range of x a good representation of the 

solution of (I) can be attained only for a large number of terms of the series of 

successive approximations. Of course, the practical use of such a solution is extremely 

difficult. Hence, many attempts have been made [ 1, 31 to perfect a standard iteration 

method, in order that the first terms of the series alone may more satisfactorily describe 

the solution of Eq. (I) over a sufficiently wide range of x. 

In 141 one of the methods for the approximate solution of (1) for the particular 

case Q(s), k(s, t) and (Y = $5 was proposed. The method was based on the proper- 

ties of the kernel of the integral equation (1) and on the assumption of the compara- 

tively slow variation of y (x). The approximate solution for the particular case of 

Eq. (1) found in [4] was compared with the solution obtained on a computer. It 

appeared that their difference does not exceed 8% for all x > 0. 
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Below we describe a method of successive approximations which is an efficient 

method in a number of cases [3]. The proposed method is basically similar to the idea 

used in [5] for the regularisation of Fredholm equations. 

In the following discussion we will have in mind primarily problems on mass 

transfer accompanied by the adsorption of the transferred matter at the phase separation 

boundary. If the adsorption process is considered to be sufficiently rapid, this stage 

can be described by means of adsorption isotherms. Then the form of the function 

f 0) in Eq. (1) is determined by the form of the adsorption isotherms and satisfies the 

following conditions: 

f(y) d f d d IS e me an continuous for --oo < y i b, b > 0, 

lim f(y)=+-. 
wb--O 

(2) 

We will consider only non-negative values of the argument, that is. x > 0. We put 

formally y, E y (x) and rewrite (1) in the form 

or 

We note that in the last term on the right side of (3) the denominator of the 

vanishes for t = x. Hence we put approximately 

s s E(xyt) [f(Yd--f(Y?l-111 GQ = [f(y*)---f(y,_1)] D(x), 
0 (x-tJa 

where 

D(x)= 6 (E(?$ dt. 

Substituting (4) in (3) we obtain 

l/n = cp(x)+ j vx* t, 
0 (” - 9” f(yn-w + W) WY,)- f(y,_*)]. 

kernel 

(4) 

(5) 

We construct the successive approximations by the following rule: 
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Yn - cp(4 - wMYn)= i (3”‘“fl- f [yw (t)] dt - D(x)f(y,_,), (6) 

n = 1, 2, 3, . . . . 

Each equation of (6) can be regarded as a transcendental equation for findingy,. 

Yheorem 

Let cp(r) be continuous forx > 0 and Jcp(O) I< b, b > 0; E(x, t) be 

continuous in the domain 0 < I G x, x > 0; let a finite f ’ 0) exist for -00 < y < b; 

lim f(y)= + 00; 
y+b-0 

let 1 -D(x)f’ti)>Oforallx>O,-=<y<b;forx>Olet 

D(x)= 3 (t”:;;a dt+O, 
lim f(Y) -0 Or +m- _-y- 

Then: (1) for every n (n = 0, 1, 2, . . _ ) there exists for all x > 0 a unique continuous 

function yn, (x), satisfying the corresponding equation of the system (6) and the initial 

condition y,(O) = v (0) ; 

(2) y,Jx) < b, x 2 0; 

(3) the sequence of functions y,(x) converges uniformly in some neighbourhood 

of zero to the solution of Eq. (1). 

The proof of the first two statements, which we will not give, can be carried out 

by using the theorem on implicit functions [6]. Turning to the proof of the third 

statement of the theorem, we first show that all they,(x) defined by (6) are uniformly 

bounded in the neighbourhood of the point x = 0. Since uo(x) is continuous and 

].Ye(o)~=]~(O)(< b, 

IYOW I -=z M7 IdO)I<M~ b. (7) 
on some segment [0, x1]. 
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Then, using (7) we obtain from (6) for n = 1 

We choose 6 > 0 so as to satisfy the inequality 

q(6) + @(-X M)S(d) +~(JV~C--l~(O) 1, MO) I) CM. (9) 

Then obviously, we have found a Sr satisfying (9) and a q. satisfying the condition 

1~ (0) I< qo < M, such aat 

where q. is the least positive root for the 6, found for the equation 

The number q. will also be the least root of the equation 

q(61) + @C--M, WS(b) +mww-~o, 4) = q, 

and the number - q. the greatest root of the equation 

-~(G,)-(z+--~, WS(61) -WlPb, qo) =p, --nip < P < cpw. 

We select any 6* < 6,. To simplify the discussion we assume that at least one of the 

functions ~(~), S(S), B(6) is strictly increasing on [0, x1 ] _ Using the properties 

of the numbers q. and - qo, we find that the inequality 

Q sz (-P(d*) + @(---MT WWL) +www-qo, q) WI 

is satisfied in the region ~(0) G 4 < Qk(s t , where qk > q(O), 0 < (Ikfe)r)< 40, > 

and the inequality 

q > ~(6,) + Q+--N M)S@.) +D(&PJ+-qo, 4) (M 

is satisfied in the region q* < y <M*. Here qS and M* are certain numbers indepen- 

dent of 6* satisfying the conditions 
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9k < 9. < go, M' > go, M strictly increases with decrease of 6*. (13) 

On the other hand the inequality 

P a -9th.) - @(--MI, M)S(d,) - D(s.)@(p, qo) (14) 

is satisfied in the region pk(6.) & p < q(O)', pk < y(O), and the inequality 

p < -V(d*) - a(---M, MN&) -WW’,(p, go) (15) 

is satisfied in the region m, < ,V < p*. Here pk, m*, p* are numbers depending on 6, 

which satisfy the conditions 

??i* < -qO<pe < pk <O,?% strictly decreases with decrease of 6*. (16) 

We take any 6 < 6*. From (8) we find that M, (6) and ml(&) must satisfy the 

inequalities 

rp(O) d MI d q(6,) + @(---M, M)S@.) +D(&)o,(mr, MI), (17) 

rp(O) > ml 2 -q((6,) -0(--M, M)S(&) --D@L)~,(~I, Ml). (18) 

We consider the region ~(0) < Ml & qk, cp(0) 2 ml 2 pk. In view of 

relations (11) and (14) the inequalities (17), (18) are satisfied in the region considered. 

In consequence of the same relations (12) and (15) we find in the region q* < Ml < go, 

-qo G ml d p. 

MI > q(6,) + W-4 M)WL) + @(--Qo, Ml)W*) 2 q(J4) + 

+ a(---M, M)S(6.) + W.)Wm, Ml), 

ml < --Tp(b.) - cD,(--M, M)S(6.) -@((ml, qo)D(S.) < 

< -q@.) -Q(--M, M)S(6,) -D(6.)U'(md%). 

(19) 

(20) 

From the inequalities (17) - (20) and conditions (13) and (16) it follows that 

mu IYI<+ <~o<M, 6 < 61 < XI. (21) 
OCr=&b 

Using (21) it is easy to repeat exactly the same inequalities for y2(x). y3(x) etc. 

Therefore, by induction, we obtain for all n 

IY&) I < MT O<x<6<61, 61 d x1 (22) 

where 6 I is found from (IO). We prove the uniform convergence of the sequence 

{yn (x)}. Estimating on [0, x0], 0 < x0 < 6 I, the difference yn - y,. , from the 

system (6) and using (22) we obtain 
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I Yn - Yn-I I < R max Iyn--l - ~~-2 1 S(z0) + RD(ro) 1 yn - ynel I, 
O<rrCrO 

n 2 2, (23) 

IY1 -!I01 ~~~~(~o)+~~(~o)ly*-yol, 
where 

R= max IV<U I. 

Choosing x0 so small that 

1 

we obtain from (23) 

-ikrC&a+f 

- R(M)D(zo) > 0, 

mix lyn--l -yn--21, n > 2, 

(24) 

(25) 

Using (25) successively for n = 2, 3, . , we find 

n=1,2 ,... . (26) 

For 

the sequence {yn(S)} converges uniformly on [0, x0] to some continuous function 

Y(x), which, as is easily verified, satisfies Eq. (1). The uniqueness of the solution 

satisfying the condition y < b, x > 0. is proved in [7]. 

It must be emphasised that for the successive approximations of the solution of 

Eq. ( 1) with an f(j) of the type (2), constructed by the method of averaging the 

functional corrections [3], there is no prior guarantee of their existence for all x 9 0. 

The theorem presented above is also proved under similar conditions for functions 

f b) defined for all y. 

It is necessary to mention that it is not obligatory to choose D (x) in the form 

(5). If we take as D (x) any continuous function equal to zero for x = 0 and satisfying 

the conditions of the theorem, all its results remain true. This provides the possibility 

of choosing D (x) for the more efficient construction of the y,. The form of D (x) 
indicated in (5) gives completeiy satisfactory approximations in the class of problems 

which interes! us. We mention that in a number of cases Eqs. (6) enable us to find _vn 

in explicit form, for example, if f (_Y) = y/(b - y). 
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We also point out that in practice the successive approximations obtained from 

(6) converge over a considerably greater region than by the estimates (lo), (24) and 

(27). For a number of problems it is possible to prove that all the yn have at infinity 

the asymptotic behaviour of the exact solution. It is therefore to be expected that 
their difference from the exact solution will also be small for all x 3 0. This is con- 

firmea in those cases where the exact solution is known. 

If the function f @) is linear, f(y) = y, then for 1 - D (x) > 0, x 2 0, all the 

yn are found explicitly from (6). As an example we give a graph 

9!ye 

FIG. 1 

T_-‘_ - - 
__CL--C-- 

a=L7 

exact value y/y, 
---__ null approximation ye/y, 

(see Fig. 1) of the exact solution (continuous curve) and the null approximation 

(dashed curve) of the linear equation 

2 

y= V'(nu) 
-w(li(u~))+ 

a = con&, yt? = con&, ZL 3 0, o<y,< 1, 

x 

w(x)= exp(- s2) 
s 

.&*dt, 
0 

arising in the problem of an electrochemical reaction with an adsorption depolariser [8j ; 

Yo (xl w(az) -= 
LL’ (uz) + aIn/ ' 

a = 2Ye”@, 
lx 

YC 
&--2y,: 

&O¶ 1 
-= 

,ue y(1 --a*) 
kw [(I-W- a2))*z2] erfc [(1 -f(i -a*))zf - 

-e~p[(1+1/(1-a~))~z*]erfc[(1+~(1-u*))z]) for a>O, a#l, 

~~=~[I---lnzexp (z2)erfc(z)] 

(28) 
for a-1. 
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If a = 0 the next approximation also is expressed very simply in terms of the elementary 
functions: 

11, 

-= 

Ye 

Using (28), (29), it is possible to estimate the accuracy of the second approximation: 

1 r/Tan - $40 1 100% < 8%, 
I !/TOY I 

The authors sincerely thank V. I. 
E. D. Belokolos for useful discussions. 

Dmitriev, E. M. Landis, A. G. Petrov and 

Translated by J. Berry 
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