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The Theory of Concentration Polarization

By B. Levich

1. General remarks

It is known that the rate of an electrochemical process on the
surface of an clectrode submerged into a solution isdetermined by two
factors: by the rate with which the substance comes in contact with
the electrode, and by the rate of the electrochemical reactions on the
electrode. The rate of supply is in itself determined not only by
the rate of diffusion (and migration in the case of ions), but by the
character of stirring of the solution as well.

The purpose of the present work is to investigate the processes
of stirring of the solution and their influence on the rate of supply
of the ions to the electrode. The question of the rate of supply to the

¢ electrode has been discussed iu literature many times. There is a con-

i siderable amount of experimental work!dealing with this question,
while the theoretical investigation in the case of stationary proces-
ses is confined to two papers of this kind. These are: Nernst's
paper® which offers a qualitative theory of the diffusion layer, at

- present generally accepted, and Eu c k e n’s® that contains an atempt
at an exact hydrodynamical theory. Besides these investigations,
there is a number of others dealing with the non-stationary processes,
which we shall not consider here.

Nernst’s theory has a qualitative character. According to this
theory, the main change of the concentration takes place in a very

1 Noyes and Whitney, Z physik. Chem., 28, 689 (1897); Bru n-
Ner and Tolloczko, ibid., 35, 283 (1904); Centnerszwer,

thid., A, 141, 297 (1929); Rol lewr, J. Phys. Chem., 29, 221 (1938); also
‘l:’;) elwyn-Hughes, «The Kinetics of Reactions in Solution», Oxford,
1933,
~ *Nernst, Z physik. Chem., 47,52(1904); Nernst and Merriam,
hid., 53, 235 (1905).

3 Eucken, Z. Eleklrochem., 88, 841 (1932).
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thin layer of the fluid close to the electrode, which is called the dif-
fusion layer. It is supposed here that the thickness of the diffusion
layer is so small that the motion of fluid within it may be neglected,
and the motion of the ions may be regarded as taking place in a rest-
ing medium. This supposition reduces the solution of the problem
of the passage of the ion towards the electrode to the solution of the
problem of diffusion and migration of ions in an immobile layer
of a fluid of a certain small thickness 8; on the boundary of the dif-
fusion layer the concentration of ions must be equal to the average
concentration of the solution.

Eucken has integrated the equations for the diffusion and the
migration of ions in the diffusion layer for the case when the ions
of only one kind are the carriers of the current and pass through
the solution.

The value of the thickness of the diffusion layer and its dependence
on the character of the flow of fluid and on the gebmetrical conditions
cannot be calculated by means of Nernst’s theory which thus turns
out to be but a qualitative theory.

The Nernst's diffusion layer theory fails to be satisfactory not
ouly because of the insufficiently, clear, foundation of its premises
and because of its qualitative character, but also since it involves
the theoretically inadmissible supposition as to the existence of an
immobile layer of a fluid of considerable thickness close to the elec-
trode. At the same time, Nernst himself discovered experimentally
the dependence of the thickness of the diffusion layer on the character
of stirring of the fluid and also on the temperature. the concentra-
tion of the solution and on other factors.

Ou the other hand, the main conclusivon of Nernst’s theory as to
the existence of a limiting diffusion current, i.e. the greatest current
that can pass through the solution, is remarkably well confirmed
by anumber of experiments and does not cause any doubts.

It will be shown later on that, while the fundamental supposition
of Nernst’s theory, as to theexistence of an immobile layer of the
fluid close to'the electrode, does not correspond to the true state of
things, still there is a region of fluid with linear drop of concentra-
tion that corresponds to Nernst’s diffusion layer.

We shall also find the dependence of the thickness of this region
of the fluid, also named by us the boundary diffusion layer, on the

character of motion of the fluid.
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Eucken's.work contains an attempt at building up an exact
hydrodynamical theory of the diffusion towards a plane electrode
surrounde(.i by the solution moving with a relatively high velocity.
HoYvever, in establishing the original equation, Eucken ias allowe(i
an inaccuracy which turns out to be essential for further investiga-
thD.. Namely, as we shall show later on during the investi atigon
of this problem, the equation of the convectioz diffusion togward
a plane electrode in a flowing liquid reads as | i

de dc o%c
u——+v—=D—
dx+L oy D oy

ja.'here t-he.x axis is directed along the electrode, while the y axis

is ptzrpefndmular toit; n and v stand for the zth and the zth compo-

nents of the velocity of motion of the fluid i g i

- oy id and ¢ is the concentration
Helere both of the terms on the left hand side of the equation have

exactly the same order of magnitude. Although close to the wall

itself u islarge as compared with », still in the same ratio % i
dy

large as compared with ?.
xr

However, Euc - i
ken puts the term v 5y 2 small without any proof

and omits it. This changes essenti i i
g ially the entire pict i
ences on the final conclusions. el
' Therefore, we are justified in considering that at present there
as (1110 theory that would allow us to find with sufficient foundation
nd accuracy the ‘rgt,e of supply of matter to the electrode at definite
geometrical conditions, and at a given regime of flow of solution

The building up of such a theory seems to be of obvious interest.

1 It c;ught Fo be mentioned that besides the electrochemical interest,
e calculation of the rate of supply of the substance to the electrod

of‘ the 'rate of the diffusion in particular, offers a purely hydrod .
mical interest as well. In the case of diffusion, particularlyy they;i?:

v

- fusion of i i r
ions, the quantity Pr = oL called Prandtl’s diffusion num-

, b(?r, reaches -the \.ral.ue of several thousands. Thus. in this case we deal
;N:ith a peculiar hml-ti ng case of hydrodynamics, which may be cal-
-~ led the hydrod'ynamms of Prandtl’s large numbers. The investigation
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of these diffusion phenomena with Prandtl’s Jarge numbers at a solid-
liquid boundary and at a liquid-liquid boundary, that is of interest
in the theory of heat transfer, may apparently be carried out in ade-
quately pure conditions only by means of the electrochemical methods.

The direct investigation of these processes in the phenomena
of heat transfer is exceedingly difficult, due to the great depen-
dence of the viscosity of fluids on the temperature.

2. The gencral equations

Let us, first of all, obtain the general equations for the con-
centration of ions in the solution and for the distribution of the
potentials in the mixed solution. Considering the motion of the
solution being given, for each kind of ions present in the solu-
tion we may write down the equation of the transfer as

de; . ‘

5Lt (vgrad) e; = DiAe; +uen; div (¢; grad 9), (1)
where ¢, is the concentration of ions of the {th kind, D; and
u; — the coefficients of the diffusion and the mobility, n; — the
valency, ¢ —the potential of the electric field.

The potential ¢ satisfies the Poisson equation:
4re
7 2)

Ap= g E nics,

it
where ¢ is the dielectric constant of the medium.

The set of equation (1) for each kind of ions present, equa-
tion (2) and the Navier-Stokes equations together with the boun-
dary conditions determining the velocity of the fluid v, give the
complete system of equations, the integration of which allows to
determine the unknown concentrations ¢; and the potential ¢ in
the solution. '

Since, however, equations (1) are non-linear partial differen-
tial equations, the solution of this system. of equations in a gene-
ral form meets with unsurmountable mathematical difficulties.
Therefore, we shall confine ourselves to the simplest cases of the
binary electrolyte (two kinds of ions) and to the case of three
kinds of ions, with the number of ions of one kind being very
small as compared with the number of ions of other kinds.

—_— g ——————

e ——t
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Let us investigate, first of all, the case of a binary electrolyte
Let ¢, and ¢, stand for the concentrations of both kinds of ions D.
anAd D_2 for their coefficients of diffusion, and n, and n, for t’heirl*
valenc'les. Further, let v be the velocity of the fluidland P tlee electric
potential. Then, regardless of the character of the motion of the

fluid, we may write down the i
. : general equations of the t ‘ .
1ons in the electrolyte: ! s -

de

?‘ +(vgrad) ¢, = D, Ac, + n}:’?l div (¢, grad g), (3)
02 e L); .
—87‘}' (V gl‘ad) 62:D2 A02+ HZTI‘L div (cz gl'ﬂd(p). (/*)

Here, i1.1 the second member on the right-hand side, the mobili-
Lies of lons z, and u, were substituted by their expressions through
tfle dlffu'smn coefficients D, and D,, the well-known Einstein rela-
lion having been made use of.

The potential ¢ satisfies the Poisson equation:

;
4ne

A?Z S (nlcl+nzcz)’ (5)

where e is the dielectric constant of the solution and e— the ele-
mentary charge of the ion. ‘

Equ‘atlons (3), (4) and (5) taken together serve, in the case
of a given v, for determining the three unknown functions ¢ e
and o. =t

Su.]ce the equatifms §3)—(5) are non-linear partial differential
€quations, the solution ina general form would offer unsurmountable
.mathematmal difficulties, being at the same time of no physical
interest, Howe.ver, these equations may be considerably simplified
by means of simple transformations.

First of all, we may suppose that the solution, in the main

O,f its bulk at any rate, is electroneutral, so that instead of equa-
tion (5) we may write

(n1c1+nzca) =0. (6)

'As it is .kf10\vn, the condition (6) is fulfilled everywhere
With a sufficient degree of accuracy, with the exception of

the region of the double layer close to the surface of the
electrode.
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Putting g Ll a
e o= 1N - (7"

we can write the following equations for the quan!;ity ¢, Whlt(",h,t F:));
the sake of brevity, we shall call also the effective concentratl

of the solution:

neD; 4. 8
—g% (vgrad) c=D,Ac+ lle div (c grad ), (8)
- 29D2 - . 8,
-;% + (v grad) ¢ = D,dc + 2+ div (cgrad 9) (8"

Subtracting the lower equation from the upper one, we find

(D, — D,) Ac+(n,D, —n.D,) 7 div (cgrad ¢) =0.

Thus
KT (Dy—Dy) 4, 9
div (C grad <?)= ——c—(’ZI—)T————f_nsD:) Ac ( )
Substituting this value of div (¢ grad'cp) into tllxe equation f}(l)r e,
we may eliminate altogether the electric potential. We get here,
in fact, ‘
n, D, (D, —D,) A
-g(; +(V grad)c:DlAc—m c

or

%—cz + (v grad) ¢ = DAc, (10)
where s -

D= n,D, — nyD,

i the effective coefficient of diffusion. ! e
;]tqtlsa(t?oltlle((iM) represents the equ?tion of convectlve. dlfhflsxtc})‘:
and with the given v wholly determines Fhe congcentra tion owhile
solution ¢ as a function of the c.:oorc'hnates and tlm?, ¥
equation (9) allows to find the distrllbuf;lon .of the electr111c p{)imi-
tial in the solution. Thus the electric t:lel(.i is ‘to be tohta f.ye{:i -
nated, and the problem of finding t}le _dlstrlbutmn o-f the 1l o
the concentration in the solution splits into two parts: a purely

art, where the solution of the problem of convective diffusion
’

i n of concentration does not

is obtained and where the distributio

depend on the field explicitly, and a subsequent determination of
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the electric field in the solution, according to the already known
distribution of concentration by means of equation (9).
Equation (9) at once allows the integral

&7 (D, —n,D) cgradp+e (D, — D,) grad ¢ — —

(12)

niny
where j stands for the vector of current density.

The integration of equation (12) allows to find the connec-
tion of the difference of potentials between the electrodes with the
current passing through this solution, which, in fact, is our
final purpose.

Further on, we shall solve the equations (10) and (9) in the geo-
metrically simple and at the same time experimentally important
cases of electrodes in the form of a revolving flat discs and of a
liquid flowing past a plate. We shall confine ourselves here to the
case of a stationary current, so that we shall consider the concen-
tration of ions and the velocity of fluid as independent of time
explicitly.

Still another case, when the migration of ions in the field may
be separated from the diffusion and the convective transfer, is
the case of three kinds of ions, when the concentration of one
kind is low as compared with the concentrations of the two other
kinds. The equations of transfer have the form:

% (vigrad) ¢, = D Ac, + " div (e, grad g), s,
% + (V grad) Gy = DgAcz + "*Z?-‘ div (cz grad <P)’ (14)
%%“*‘(V grad) Cq =D3Ac:| +n_zezgi div (Ca grad ?) (15)

and the condition of electroneutrality
' n,e +nzcz+°nuca=0’ - (16)

where a is a small coefficient as compared with unity.
Usually, it is the current carried by the ions of the third kind,
the concentration of which is low, that offers practical interest.
In solving the set of equations (13) — (16) two cases must be
distinguished. The first case is that one when only the ions of the
third kind are liberated at the electrode, and the other case is the
case when two kinds of ions are liberated at the electrode, for in-

- stance, tye second and the third opes.
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In both cases we shall solve the equations (13) —(16) by the
iessive approximations. .
I{)etlil:tdtﬁir:ugz no ionsptl))f the third kind at all in t‘he solution,. in
the zero approximation. Then the concentrations of ions of the first
and the second kind will have the values ¢] and ¢}, while the- poteg-
tial —¢,, all of these values being obtained from the quauons.( )
for a binary electrolyte. It is easy to see, howerver, that if the ions
neither of the first nor of the second kind are liberated at the elec:
trode, then -the only possible solution for ¢}, ¢ and ¢ shall read:
¢ =const, cj=const, ¢,= const.

If, however, one of the ions present in large amount‘s is libe-
rated at the electrode, then the corresponding expressions from
the solution of the case of a binary electrolyte problem must be
taken for ¢}, ¢} and ¢. . )

In the ;irst2 approximation we shall look for the solution of
equations (13)— (16) in the form: '

Cl=c?+c;’ Cq = Cq, ,
¢, =6+, P=% 19 .
where ¢;, ¢, and ¢’ are small additions, having the same order o
1! » .
magnitude as c,. : .

Inserting these values of ¢,, ¢, and ¢ into equations (13)—(16),
. neD : . 2 ,

(v grad) (c} +¢;) = D,A (6] + ;) +—7— div[(¢5+¢;) grad (g, + ¢')],

(v grad) (¢ + ) = DA (6l 4-¢)) £ "7 div (e + <)) grad (g, +9)),

seDy 1. o
(v grad) ¢, = Doley + 50+ div [e, grad (5,+-¢); |
and the equation of electroneutrality will evidently be rewritten

thus: }
" nc, + n.cy+an,c,=0. 17

Neglecting all the members containing the products -of small
quantilies ¢, ¢;, ¢ and ¢; and taking into consideration the equa-

tions for ¢} and ¢;, we find

(v grad) ¢, = D Ac,+ 2P1 div (c.grad g, +c®grad ),  (18)

kT
(vgrad) ;= DAC 4+ 2228 div (c;grad g, + S grad ), (19)
(vgrad) ¢, = D,Ac, + ";:11,)‘ div (¢, grad ¢,). (20)

If we are dealing with the first case, when only the ions

2
g ——
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¢, are liberated, then grad P =0 and the equations are reduced
to the following:

(v grad) ;= D,Ac; + 2 22D gy graq g,

. . 2D, .. ’
(vgrad) ¢, = D,Ac; + e ";:T * div grad ¢’,

(vgrad)e, = DAc,.

If, however, the ions present in the solution in large amounts
are liberated, then c?, ¢; and ¢ are certain given functions of z, and
no longer constants. |

The concentration ¢, in this case must be found by means of the
direct solution of equation (20). ¢, being known, it is possible by
means of equation (15) to express ¢, through ¢; and ¢,, for instance,
and to eliminate the potential ¢’ from equations (18) and (20) by
multiplying the first by n,, the second by »,, and subtracting them
one from another. This allows, in principle, to find ¢, ¢, and
later ¢’, thus solving the problem to the end.

In other cases we have not as yet succeeded in simplifying the
equation of the transfer by separating the migration in the presence
of convection of the fluid.

3. A rotating electrode

Our next problem consists in solving for particular geometrical
conditions and with agiven character of stirring the general equa-
tions of transfer written down in the preceding section.

In practice, the stirring of the solution is realized by means
of natural or forced convection

As far as natural convection is concerned, it originates in the
solution mainly because of the influence of two factors: the non-
homogeneity of the solution between the electrodes and the non-uni-
form distribution of temperature in the solution, which, if other
causes are excluded by means of placing of the solution in a
thermostat, may be connected with the evaporation from the surface
of the fluid.

It is quite difficult to get rid of the natural convection; however,
on the other hand. the motion of the fluid in the condition of natura]

convection may be very easily distorted by various secondary factors.
Therefore a theoretical investigation of the influence of natural con-~
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vection on the current passing in a fluid would scarcely seem reasona-
ble. A much greater interest is offered by the case of forced convec-
tion, when the most energetic stirring of the solution takes place,
and the influence of subordinate factors may be reduced to a mini-
mum.

Artificial stirring of the solution is realized in practice by various
methods, the theoretical advantage and shortcomings of which shall
be discussed in next section, dealing with the theory of the boun-
dary diffusion layer.

Here we shall confine ourselves to the case when the stirring
of the electrolyte is realized by means of an electrode which has
the shape of a flat disc of a sufficiently large area, rotating about
an axis perpendicular to the plane of the disc with a constant
angular velocity .

It turns out here that the problem of finding the rate of supply

of the substance to the electrode may be solved exactly, without any .

approximations, and therefore offers great interest.

At the same time, the revolving disc is very often used in practice
and its theory has a practical value as well. Further on, we shall sup-
pose that the area of the electrode is sufficiently large; and that it is
placed in a vessel with a solution of an infinite volume, so as to be in
a position to neglect all the effects connected with the edges of the
disc and the influence of the walls of the vessel.

The problem of the motion of fluid in such conditions has
been solved by Karman *. We shall reproduce here this solu-
tion briefly inasmuch as the expressions for the velocities of
the fluid shall be needed further on.

Here we shall restrict ourselves only to the case of sufficiently
small Reynolds numbers, so that the motion of the fluid might
be eonsidered as laminar. As has been established by Kem pf’s
experiments *, the flow of the fluid dragged by a rotating disc
remains laminar up to Reynolds number Re ~ 10°. It scarcely
seems reasonable to consider the convective transfer when there
is a turbulent flow of the fluid in the case of a rotating disc,
since the calculation of the regime of flow itself is not in a suf-
ficiently good accordance with the experiment.

4+ Goldstein, «Modern Hydrodynamics», Vol. I and II, Oxford, 1938.
See also K arman, Z.angew. Math. und Mech., 1, 244 (1921).
5 Kempf, «Reibungswiderstand rotierender Scheiben», Berlin, 1924, p. 168,

¢

e —
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Let us choose cylindrical coordinates r, ¢ and 2z, directing
thg z axis vertically upwards, and let us investigate only the upper
haif space above the disc. Then the Navier-Stokes equations
for a stationary current of the fluid will have the following form:

dv, ue dv, %, v 1 8
T T aTa'—Ti)—izf’ (1)
00 v, de, 9%
¢ r's " . A 4 vy
Or 3r r “E T T ) (2)
do dr 0% 19 .
o U =V 7 e 3)
and the continuity equation
o, ; By . OBy .
ot =0 (4)

Here v,, v, and v, are the components of the velocity, p is

the pressure, p and v are the density and the kinematic viscosity
of the fluid.

The following conditions serve as the

boundary conditions of equation (1). L
On the surface of the disc (the plane
v,=0, v,=wr, ©v,=0. (d)
At z=co (far away Irom the disc) /AL
v,=0, v,=0, u,:—é. (6) { !

The last condition shows that there is
far away from the disc a constant current =
of fluid flowing towards the disc (Fig. 1).
+ Let us introduce a new non-dimensio-
nal variable and let us look for the so-
lutionof equations (1)—(4), satisfying the
boundary conditions (5)—(6) in the form

b, =roF (0 s=reG(); vi=}H (),
=L (L) 7

Pig. 1. The lines of flow of
a liquid flowing past a ro-
tating disc.
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“The functions F, G, H and P of the argument  evidently .As far as the functions F and G are concerned, G diminishes
satisfy the following equations: ?-apldly fiown to zero as we move away t:rom the disc, while F has
F*—G'+HF' =F", 8) ‘ its maximum close to the disc, after which it also diminishes down

9FG + HG' =G, 9) to zero. Therefore, an exact solution of the problem gives the

HH' —H"=P’, (10} T following picture of the motion of the liquid. Away from the

9F +H' =0, (11) rotating infinite disc the fluid moves vertically in the direction
of the electrode; in a thin® layer directly adjacent to the surface

with the boundary conditions of the disc, the fluid is dragged and acquires a rotating motion,

F(0) =0, g(o) =_%)’ B0 =0, (12) with the angular velocity increasing when approaching the disc up
F (20) =0, {0} =0, Y to the value of w. Finally, because of the centrifugal effect in the
the value of H at {=co being finite. ) region where it is dragged, the fluid acquires also a radial velocity
The most exact and complete solution .of th}s system b.elongf The lines of the flow of the fluid join in the infinity.

to Cochrane. At large values of the non-'dlmensm.nal coordinate . The thickness of the region of dragging is not large. As may be
for F, G and H the following asymptotic expansions take place: seen from the graph, already at {~2.7—2.8, G becomes very small,
Pa Ae-c'—{i.—'*.',gi g-20% 1 A (A[:c—i‘- B?) e-3Ct . B g:n(x)fnslung tenfold as compared with its value on the disc itselfat
G = Be-C% — B '('AT—_—;C-t B e~3C 4 ..., | If this point be determined conventionally as a boundary of the

R _C+2§e-0‘—‘4.2—ga8’ e-¥t.L .. _ region of dragging, then its Lhicknesia will be equal

F 8~ 2.7 ‘/1 .

where A, B and C are constants determined by means of numeri- v e (17)

cal integration. On the other hand, at small values of C, the fol-

At ©=25, in water at room temperature
lowing expansions take place:

( ,\/2_ 01_—\, .

Fealm 20— bl — ..., (13) 3~2.7%1~0.05 om
G=1+b’+lai’+ afe (14) ; Let us turn now to the solution of the problem of the transfer
~T g : . of ions in the electrolyte to the revolving electrode. For the cases
H= ——a:=+-:-la—+——6-0, (15) enumerated in the preceding section, the problem of the motion

of ions splits into two problems; into a purely diffusion part,
Consisting of the solution of equation (10) of section 2, and into
the problem of finding the distribution of the electric field in
the solution.
Our final problem is to find the relation between the electro-
a=0.510, b= —0.616,. C=0.886, . motive force in the circuit and the electric current flowing
A=0.934, B=1.208. (16) through the solution (the voli-ampere characteristic of the

where a and b are some other constants. .

Choosing all the constants pointed out so that the f.uncuox}s
F, G, H and their derivatives with respect to { should remain conti-
nuous, we may obtain the following numerical values of constants 6:

As the limiting expressions for H show, the velocity component . process). '
normal to the surface of the disc increases rapidly as we move away " The equation of the convective diffusion writlen in cylindrical
from the disc, and then tends to the constant limit C. ’ coordinates has the form
9y 1. By, . o5 A . % . 1 9%
8 Cochrane, Proc. Cambr. Phil. Soc., 80, 365 (1934). L’c7_r+7bWJ§+b2(ﬂ_D<aTE+o—;z+’;i Ta) f (18)

Acta Physicochimica U.R.S.S. Vol. XVII. No. 5—. 3
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Inasmuch as in our case, due lo axial symmetry of the pro-
blem, ¢ cannot depend on the angle ¢ explicitly, the equation
is simplified and acquires the form:

? — de d% | ¢
B2+ lHeor=D(5+5)

where for ¢, and v, their values from equation (1?) are inserted.
The equation of the field, according to equation (10) of sec-
tion 2 may be written down in cylindrical coordinates in the form:

(19)

ol D, —ngD;)e* 99 Ir 9
(Dx"'Ds).,e.a_f.'l'(nl : kT2 ¢ = T g (20)
d D,—n,D;)e* dp  J.
(Dx—Da)ea_i'*'(n'l . an 3 CE—R—IH—_ (21)

where j, and j, are the radial and the vertical components of the
current.

For the sake of simplicity we shall consider only the upper plane _

of the disc and the half space above it filled by the fluid. The situ-
alion at the lower plane of the disc shall be identically the same
and shall correspond simply to the doubling of the disc area.
The current ;. to the electrode in the upper half plane flows
against the positive direction of the axis z and is considered by'us
as negative. Therefore, there is a plus sign in the rig.ht-halnd s.lde
of equation (21). The current /., flows along the positive direction
of the r axis and is therefore positive.

The following conditions serve as the boundary conditions:
the potential ¢ of the second electrode (anode) situated away from
the revolving electrode, at z =1/, is chosen as zero:

Q=i =1

The concentration of the solution is designated here through c¢(".
Evidently

where ¢() and ¢{) is the concentration of both kinds of ions in the

bulk of the solution:

g=], c=eb, (23)

Close to the surface of the electrode, near the plane z =0, the total
current transferred to the electrode by those ions which are not
liberated at this electrode must vanish. We shall admit that

The Theory of Concentration Polarization 271

the. ions of the first kind are liberated at the electrode, so that
for the ions of the second kind we may write

dy

2 5=

de n.eD,
bt

c 0 at

g=0. (24)

This relationship, generally speaking, does not take place within
the solution itself close to the electrode, since even if the ions
of the second kind are not liberated at the electrode, still they may
carry a current differing from zero due to convection. On the elec-

trode itself, the convection velocity vanishes and the equality (24)
must hold. A

B 1 : 4
Multiplying (24) by s We find, evidently, the boundary con-
dition for ¢:
de | nge o 1 ’
We shall attempt to look for the solution of equations (19),

(20), (21) satisfying the boundary conditions (22), (23), (24’) in the
form

c=c(z) and ¢@=¢(z), (25)

i. e. depending only on the z coordinate. If such a solution were
found and would turn out not to be contradictory, on the basis
of the uniqueness theorem, it might be considered as the correct
solution of our problem. Physically, supposition (25) means no-
thing else but that the radial motion of the fluid cannot carry
the ions beyond the electrode, and consequently may, with a fair

“degree of exactness, be fulfilled only for large dimensions of the
-dise, when the influence of the edges may be neglected and the

disc may be considered infinitely large.

If the supposition (25) is fulfilled, then the equations (19)—
(21) will evidently acquire the following form:

y dc___D@

Y21z dsz?’ (26)

o de | (nyDy —n,D,) e L it
(Dx D2)ed:+“t“1“(‘d_3_n_’ﬁ;’_l7 \26)
/.r =0. (26”)

3*
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Integrating (26) we find, successively

T
J'\B:dz
Z—izale" , (27)
4 1 z
D‘fi dz
c=al§e » dz+a,, (28)

where a, and a, are the constants of integration.
The boundary condition (22) gives

l

1 <
7 'D‘f eodz
e dz +a,,

¢ =a,
0

so that it is convenient to write the expression for ¢ in the form

z

1 z
b‘_rl':dz
c=a e °* dz + ¢,

I

(29)

Equation (26’) may be written as:

kT d_z
e (n,D, —n,D,) ¢

(D, —D,) kT dc
e(nD,—n,D,) ¢’

do =

Integrating within the limits from l to z, we find the following
expression for the potential g: .

kT (Dy—Dy) 1, € kTj gd_.; 30
- e (n, Dy — nyDy) e ' e (nDy—nyDy) ; ¢ +a,. (30)

The conslant ¢, may be found from the boundary condition (24").
d d
Subsliluting into (24’) the value of ¢Tz’ ¢ and Ei'? for z =0, we get,

after simple transformations:

S R 31
al—nﬁ—nl De’ ( )
whence, substituting into (29) and (30), we get:
z 1 7
: nn 1 (D »r v, d7 -
v DLeSe 3 dz ¢, (29"

L
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and
_ __ kT (D,— D, ¢
- e (nDy — nyD) g ed %
2
kTj ds ’
+ e (n, D, — n,D,) TEAE, (30)
nyf m B 0
l _ ey €,
(nz—‘nl)DleJ‘ e s ictnd

i

The potential difference between the anode and the cathode
®o— %k, Where o, is the potential of the anode, and ¢,—the poten-
tial of the cathode, is evidently equal to the applied potential
difference V minus the concentration polarizalion P. The latter
is equal to

_ kT ¢

% )
P:—glcf}_____]g_ )
eny eth

=]
o
(‘1)

(32)

Since weé have chosen the zero of potential on the anode (z=1),
we get evidently

— kT(Dl_Dz) €y
i e (nDy—n,D,) g oD i

0
_ KTy ds
+ e? (n,D; — n, D)

'_ Therefore

 V=(9,—)+P=—g,+ P= 4+ XTI D) 1,

e(nDy—n,Dy) ° ;b
0

kT 1 <o

e (n, D) — n,D,) 2

A %I"L‘:d?
J‘e 0 dz + ¢

(33)

i nyf
(ra—ny) Dye

Let us now turn to the calculation of the last integral. Substi-

&)




274 B. Levich

tuting the values v, from equations (15). and (27), we get

dz

, " f —[QQQT};‘S%']
& @)

(ny —ny) Dye

dz 4 ¢
i
Let us introduce into the integral (34) a new variable ¢, deter-

mined as
t:gz‘_, (35)
where
= D D /a y
< )1/5 ( ) ‘/ —182( ) (35)
Here &= —(:— is a quantity which, except for the coefficient,

Is equal to the thickness of the boundary layer of fluid, determined
by formula (17). Thus, for the distance between the electrodes
always / » &’. Then we get

0
atr
= n

U l —[13+8H:—...]dt+c‘~_”

e (nﬂ—.nl) ‘Dle ® 8
s
0
-+ ' dt =1,+1, (36)

i nyf (BB ) L ?;[’

(ny — ny) Dye
178
Here B stands for a certain numerical coefficient.

-"_'14
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In the integral /, the variable ¢ is greater than unity. Because
of the rapid convergence of the exponential expressions,
the first integral in the denominator is extremely small as com-
pared with the second member and may be omitted. Therefore

1
SR e gyl EY ol b
BI
inasmuch as > d’.
The second integral 7, is calculated in the appendix. The
result is
_ (ny—ny) D, 0
I,="" — lg YOI (38)
and consequently, due to equations (38), (37) and (36),
[y o (ny — ny) Dye 1 P 39
_1+ 3__(l)+ \——'gm' (‘)
Inserting this value of I into equation (36), we get:
_ kT(Dy =Dy ,. 9 . D kT (a,="n)D, (0
" e(nyD, — nyD,) lg (D alg 8 og nz(niDl-—lngD) g oD +

kTy(l —

KTiA=2) g
e*(n/'D, — nzD )c(”

(n,D, — nyD,) ¢

T Yt

The second member of equation (40) has a simple physical
meaning; it is nothing else but the usual ohmic potential drop in
a solution, while the first member represents the potential drop con-

~nected with concentration polarization and the ohmic drop in the so-
lution of variable concentration. From the form of the second mem-

ber containing the usual ohmic drop in a solution with a constant
concentration ¢() over the length (I—28&'), we see thal a noliceable
change of concentration takes place only over the region of the
solution between the electrode itself (z=0) and the plane z~. %"

Thus, we come to the following fundamental result: all the
solution may be split into two regions. In the first region, in
the interval between z~ 38" and z~ /, the concentration of the
solution remains constant and equal to ¢, In the second region,
between the electrode and z=2’, the concentration varies from «
the value of ¢, on the electrode to the value of ¢() in the solution.
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It is necessary to emphasize here that such a picture of the
distribution of concentration in the solution is by no means ob-
vious and we did notpostulate it as was done in Nernst’s theory,
but came to it as a result of precise analysis. At not very low
concentrations of the solution and at usual distances between
the electrodes I, the ohmic resistance of the solution is extre-
mely small and the second member in formula (40) may be omit-
ted. Then we get, from equation (40):

1 1 ci
g gT.()r

V__

8 Nny By

or, substituting the value of ¢ from equation (29') we get:

0
Inl‘( > ( 1,)8" S —(134B14...) )
£ gmp e et ).

ny Y (ny -~ n)D, ec“) s

Since the distance between the electrodes ! is great as compared -

with &', we may approximately substitute infinity for the lower
limit of the integral. Then we get:
Se—([a+3l4+...)dt§_

m I OEIOR

where I' is the gamma function.

Here we have taken the advantage of the fact that at great
values of ¢, when the higher powers in the polynome in the
exponent prevail, the integrated expression vanishes, therefore the
integral converges very rapidly. Thus, finally

(“::) g(1~ (,,,"i’nfifff(ne):

0

o8
(3]

——— fo s (41
< ) <1 Nim (4 )
where ;i denotes the quantity:
. - AQ) ,
om - e D (42)

Formula (41) shows that to the revolving electrode there may
flow a current, the intensity of which does not exceed the value
of jiim, called, therefore, the limiting current, or the current of
saturation. In the case of passage of a current exceeding the
imiting current, there would arise a deviation of the solution from

S |

1w
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electroneutrality, accompanied by the appearance of a very high
stopping resistance, as a result of which the density of the current
would be dlmmlshed down to the values of jjip. Rewriting for-
mula (41) in the form

eV
1 1

" (a‘a))

]'=]'um<1—6 ‘ (43)

we see (inasmuch asn, < 0) that at an electromotive force significant

toany extent and exceeding g, there passes through the solution

.a limiting current, which is independent of the electric field

strength.

Since the limiting current does not depend on the field strength,
there is no need, in order to find its value alone, to perform all
the preceding calculauons In fact, since the limiting current is
a pure diffusion process, we can, in order to find it, make use of
the following arguments.

Equation (43) connects the current ; flowing in the solution
with the difference of concentrations at the electrodes and the para-
meters characterizing the motion of the fluid and of the ions.
It is clear that the highest possible value of the current Jlim
would correspond to the highest value of the difference of concen-
trations, i. e. to the value of ¢© equal to zero.

Thus, equation (29°) gives directly

] M (ng—n,)D,e W (ny — ny) Dye 1
Jlim = N = i .« s -
D‘f_’o;dz 3 S e~ (B3+BH -+ )q,
n, Se 0 dz 3
0
&Y (ny —n,)D,e ;
=_ﬁ— (42')

The full current flowing through the solution is proportional
to the area of the electrode and equals

I = 21!7‘2]'11”1,

where factor 2 is introduced in order to take both sides of the

dis¢ into account.
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It follows from formula (42°) that the value of the limiting
current jim turns out to correspond to such a picture of the
distribution of ions, in which there would take place a linear
drop of concentration from the value corresponding to the average
concentration in the bulk of the solution down to zero close to
the revolving electrode, this drop occurring within the layer of
the thickness of

=080 =089x 182 ()" )/ Io1e2(2)"Y 2. ()

The existence of the quanlity 8", called the thickness of the
diffusion layer, was postulated by Nernst’.
We see that the exact Lheory

—Cgp, . A is in accord with Nernst’s quali-
' tative theory and leads to a quite

definite dependence between the

AT thickness of the diffusion layer,
on theone hand, and the proper-

ties of ions of the fluid and the

a,;~ character of its motion, on the

other hand. At the same time,
the essential difference between
posk ' the present theory and Nernst’s
theory lies in the fact that in
the former, no incorrect assurn-
ptions are made concerning the
immobility of the fluid within
the diffusion - layer. It only
turns out that also in the case
of a fluid moving with respecl
to the electrode, there is a region of a very abrupt, almost linear
drop of concentration.

It is necessary lo emphasize that with an exactness up to a
coefficient of the order of unity, between the thickness of the
diffusion layer &' and the thickness of the boundary layer of
fluid 3, dragged by the rotating disc, there exists the relation

e (2)"s (45)

? Eucken, Z physik. Chem., 59, 72 (1907); B aars, Handb. d. Phys.,
18, 559 (1928).

9
(‘ é‘l

Fig. 2. The depedence of the concentration
of solulwn on the distance from the disc.
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As will be shown in the followmg section, this relation has
a general character.

For the particular case of a univalent electrolyte and cathode
deposition (n,=1, n,= — 1) weé have the following expression for
the volt-ampere characteristic of the discharge:

B
_ - J=him(1—e T)
where i ‘
ND, ND,e

O‘—gga’ T oa (?)"'3 ‘/g . (46)

If, instead of the angular velocily w, we should introduce the
number of revolutions Z——

Jlim =

then

ND,e
DN/ v
22(7) V/Z

With respect to the order of magnitude D~ 10-%, v=10-° and

Jlim =

(45)

A more detailed comparison wilth experimenlal dala on hand
shall be given in the following section.

4, The general theory of the boundary layer

A laminar boundary layer. In the preceding

- section devoted to the theory of a rotating electrode we have develop-
.ed an exact theory of the limiting current passing through the solution.

It turned out there that although, strictly speaking, the decrease
of concentration takes place throughout the solution, there exists
a relatively thin layer of fluid in which a very rapid drop of concen-
tration takes place. Further, beyond the limits of this layer, concen-
tration may be-considered as almost constant. This circumstance is
closely bound with the character of the flow of the fluid dragged by a
rotating electrode. Indeed, the Kéarman theory given at the begin-
ning of the chapter shows that the fluid is dragged by the disc only
within a very thin layer, beyond the limits of which there is but
a steady flow of the fluid towards the electrode.
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It was found there [equation (45)] that between the thickness of
the diffusion boundary layer and the thickness of the boundary layer
of fluid there exists a simple connection.

This eircumstance is not a peculiar characteristic of the rotating
electrode, but apparently is of an universal character. It turns out
that in case of any geometrical conditions of flow of fluid with
sufficiently high Reynolds numbers, there is close to the surface
of the electrode a thin diffusion layer within which the main change
of concentration takes place.

For the sake of convenience we shall consider the electrode at rest
and the solution as flowing past the electrode with a given velocity
which equals at a great distance from the electrode /.

The flow of the fluid is described by Navier-Stokes equation
which for a stationary flow of the fluid have the form

(v grad) v = — grad »‘%—]— VAV, (1)
divv =0, (2)

where v is the vector of velocity of the fluid, p—the pressure,
p—the density and v—the kinematic viscosity of the fluid. As is
known, the character of flow of the fluid is determined by the value
of the only non-dimensional parameter that may be obtained by means
of the basic quantities enlering the Navier-Stokes equations, i. e.

of the Reynolds number Re = {Jv_l, where v is a characteristic velocity

of the flow, and !is a characteristic length (in our case, the dimensions
of the body past which the fluid flows). The Reynolds number, as far
as the order of magnitude is concerned, represents the ratio of the con-
vective term (v grad) v in the left-hand side of equation (1) to the
viscous term vAv in the right-hand side of equation (1). Indeed

1
U-—=U =
Ba, [ (v grad)v|__~ l Nﬂ
[ vAV | ] v

Un

1f the Reynolds number is large (but not large enough to set in the
turbulent flow), then the viscous term is small as compared with
the convective member and may be omitted. Here the Navier-Stokes
equationsreduce tothe equations of motion of a perfect fluid, whence
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it may be seen that the influence of viscosity does not tell at all on the
flow of the fluid in volume. Thus, next to the surface of a solid body,
there moves with great velocity a flow of a quasi-perfect fluid, that
may slip along its surface without any loss of velocity caused by fric-
tion. On the other hand, however, the experiment shows that on the
surface of a solid body there is no slip between the solid body and
the fluid, so that the velocity of the latter drops to zero on the boun-
dary with the solid body. Therefore, in the immediate vicinity of the
surface of the solid body, the velocity of the fluid must change from
the comparatively high value of the velocity of the stream flowing

past the surface down to zero at the solid wall. In this region called,

as is known, Prandtl’s boundary layer, because of the very high gra-
dient of velocity in the direction normal to the wall, it is no longer
possible to neglect the influence of viscosity, and the term vAv turns
out here 1o be of the same order of magnitude as the convective term.
Thus, the entire stream of the fluid with large Reynolds numbers may
be divided into two regions: the region of potential flow, in which
viscosity does not play any essential part, and the region of
Prandtl’s boundary layer, where, on the contrary, the influence of
viscosity is very essential and the viscous terms in Navier-Stokes equa-
tion may not be dropped. However, due to the circumstance that the
thickness of the boundary layer & is very small, the Navier-Stokes
equations here may be considerably simplified ¢. It is clear, indeed,
that the variation of velocity along the wall within the boundary
layer is very small as compared with its variation along the normal.

If the X axis is directed along the surface of the body, which for
the sake of simplicity we shall consider as having a very large radius
of curvature, and the Y axis is directed normal to the wall, then

.. the equations of motion of the fluid in the boundary layer (Prandtl’s

equations) would have the form:

02U 1dp 122_0 a_g E)V_O
9yr  pdx’ dy = =

oU oU

where U and V denotle the tangential and the normal components
of velocity.

On the surface of the body U =V =0, while far away from it,
on the limits of the boundary layer, U turns into the given velo-
city of the outer stream flowing past the body, U,. The thickness
of the boundary layer 2 is determined as such a dislance from the
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wall, in which the tangential component of velocily & becomes
with a sufficient degree of accuracy . equal to U,. A simple
analysis shows that always by the order of magnitude the thick-
ness of the boundary layer is equal to

va

i~V T 3)
where z denotes the distance from a front stagnation’ point.

The second Prandtl’s equation shows that the pressure in

a boundary layer does not change in the direction normal to the

wall, Therefore, the term g—‘:in the first equation represents the
gradient of pressure along the wall in an exterior potential
stream.

In a particular case, when in the exterior stream there is no

e a
gradient of pressure dp, and Prandtl’s equalions are still more -

D2

simplified, acquiring the form:
oU au *U
U"a*w-f—Vay-:VW, (4)
ap
E = 07 (5)
au . av

Solutions of Prandtl’s equation (4)— (6) for the component of

the velocity with small (as compared with 8) values of y, may be
represented in lhe form

U viy?
U3yt Vad+... (7)
Lel us turn now to the equalions of convective diffusion of

ions in the solution. According to preceding statements, they
shall have the form

de e e | o
gtV =D (Ga+os), (8)
D being the effective coefficient of diffusion. The form’of equation (8)
is very similar to the form of Navier-Stokes equatioﬁs, when in the
latter the gradient of pressure is absent. Here, coefficient of diffu-
sion D plays the réle of the kinematic viscosity v. Therefore, the
characler of convective diffusion shall be determined by the value

i b P -

|
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of the only non-dimensional quantily entering equation (8) %l,

anatogous to the Reynolds number. The quantity (,]Di is called the

Pekle number and has a simple meaning —it represents, in the
order of magnitude, the ratio of the convective term in equation
(8) to the diffusion term:

de

ox Ul
Fen~ 3~ p -

ay?

In the case of great values of the Pekle number, we may apply to
the equation of convective diffusion considerations wholly similar to
those brought forward above, concerning the boundary layer in the
case of an obstacle with a large Reynolds number Re. In fact, when
Pe» 1 at great distances from the surface of the obstacle, the
diffusion term in equation (8) may be neglected, so that in this
region the value of concentration shall be determined exclusively
by the convection of the fluid. In particular, in the case of the
usual stirring of the solution, the concentration at a distance from
the electrode shall be constant.

On the other hand, on the surface of the electrode, concentration
¢ is also constant, but it is different from the volume concentration
(in particular, for the case of the limiting current ¢ =0 on the elec-
trode). Therefore, the main change of concentration must take place
within a thin layer of the solution, adjacent to the surface of the
electrode. In this thin layer of fluid the diffusion term in equation (8),
due to large values of concentration gradient occurring here, turns out
to be of the same order of magnitude as the convective term. Thus,

~ we see that in the case of high Pekle number Pe, there must exist

aregion of abrupt change of concentration of the solution—a region
similar to that of the abrupt change of the velocity of the fluid—
the Prandtl boundary layer. We shall call it following Nernst the
region of the boundary diffusion layer.

These considerations refer equally to the diffusion of neutral
particles and to the diffusion of ions in those cases, enumerated in
section 2, when the electric field may be separated from the
general equations of transfer.

Our problem at present is to obtain the equations of convective
diffusion in a boundary diffusion layer and to determine the thickness
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of the latter &’. The solution of the first problem does not offer any
difficulties; it is clear that in a diffusion layer the change of concen-
tration along the direction perpendicular to the wall shall he great
in comparison with the change of concentration along the wall,
so that

e  d%

% g. - d% e .
oyz'\« 30 g P o ¢

oz a2
Therefore, the equation of convective diffusion in the boundary
diffusion layer has the formn

I/ ac %

dc
VetV 5=Dap- . (9)

In finding the thickness of the diffusion layer, it is necessary
to distinguish between two cases, different in principle: the case

when the non-dimensional ratioDl, called the Prandtl’s diffusion -

number Pr, is great as compared with unity, and the case when, on
the contrary, it is a number of the order of unity.

Strictly speaking, the latter case is never realized in practice
in the phenomenon of diffusion. However, it is widely known in
phenomena of heat conduction, where the coefficient of heat conduc-
tion is usually of the same order of magnitude as the viscosity of the
fluid.

Besides, as shall be seen below, in order that there should be
between the two cases a difference essential in practice, it is neces-
sary that not only the Prandtl number itself, but (Pr) /s also were
large as compared with unity, i. e. that Pr were at least of the order
of a thousand.

We shall consider here only the case of very large Prandtl numbers
in which we are directly interested, and which is alwavs realized
in electrochemistry. )

Inasmuch as the thickness of the boundary layer 3~ /v, and for
the process of diffusion the réle of kinematic viscosity is played by the
coefficient of diffusion D, it is clear that the thickness of the boundary
diffusion layer &’ is smaller than &, since D<'v. This may also be seen
directly from equation (8).

This circumstance allows us, in investigating the diffusion layer,
to take advantage of the expansion for the components of velocity (7),

in which only the first term is retained, since in the diffusion

The Theory of Concentration Polarization 285

: : 3
layer certainly y<&. In equation (9) the member V -‘,;—; must be of

. d%c .
the same order of magnitude as the member D o

1 On the other hand, according to the order of magnitude,
with y ~&" we have:

ae ade
Vo~V (5

AN ——

Ve ved’
8’ o3

y=e

9% De
2 <6y2>y=a- iy

From both the expressions obtained, we get

! o DN\ 4
| 8’ ~ (7) 8~ (PI‘—_)T/; "
We can see from the relationship (10) that the thickness of the
diffusion boundary layer is connected with the thickness of Prandtl’s
| boundary layer by an universal relations, independent of the Rey-
. nolds number. v
! Due lo the smallness of the coefficient of diffusion, & is always
small as compared with &, the use of formula (10) being justi-
| fied, inasmuch as (Pr)'® > 1.
It is easy to see here that the first term in the left-hand side of
equation (9) is of the same order of magnitude as the second one, 7. e.

de dc

while

(10)

-

4

Indeed

- Ugy ¢
o i = ay dy

Ugevs'  De ¢ ; 0¢
= g ~ E'T' ~ D —
dz & = .

|
Uy
‘on the basis of equations (3) and (7). . . , )
Comparison of equation (9) with equation (4) in Eucken’s work
shows that he made an error neglecting a term of the same order
of magnitude as thal one retained in the equation.

L
1 The case of Prandtl’s numbers Pr of the order of unity, consi-

] dered in the Ltheory of heat conduction, leads to a different relation

v
1
[
)
|

between 2’ and 3. Indeed in this case*

" ) N
X —_—  c——
S~ '/ = 8~ Prl/’
where x is the coefficient of heat conduction.
4
Acta Physicochimica U.R.8.S. Vol. XVII. No. 5—86. 4
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Equations (10) and (3)show by the way that the thickness of the
diffusion layer in the case of a solution flowing past the electrode
depends, generally speaking, on the coordinate z on the electrodesur-
face. Namely, & increases as the square root of the distance from the
front stagnation point of the body. Therefore, for instance, the
thickness of electrolytical deposits must vary according to this
law, as we move away from the end of the electrode —a statement
that has a considerable technical interest for certain cases of depo-
sits on precise instruments.

It is clear, of course, that the formulae for thicknesses &’ and
¢ may be made use of only in cases of sufficiently large values of
z, since in the opposite case the requirement Re > 1, or Pe » 1,
correspondingly, shall not be fulfilled.

Knowledge of the expression for the thickness of the diffusion

layer enables to write down at once the expression for the order of.

magnitude of the limiting current that may flow to the electrode.
It is the limiting current, exactly, that corresponds to the great-
est drop of concentration between the solution and the electrode,
.. e. it evidently takes place when the concentration of ions
liberating at the electrode vanishes. Here, as to the order of mag-
nitude, the limiling current density jym is equal to

¢ —co _ DV pr'/a D pr s

k j!jm =D 3 ; F} ===

U,

The limiting current density depends, generally speaking, on the
chosen point on the electrode surface, since the thickness itself of
the diffusion layer changes from point to point.

The total limiting current flowing down the electrode is

Jiim= R flim @S

where the integration is performed over the surface of the electrode.
If we should consider that the]curvature of the latter is sufficient-
ly small, i. e. consider that it has the shape of a plate / in length
and % in width, then evidently

1/3 ¥
J1im ~ Dec( (1%) l/%ﬁl h.

Exact calculations of the limiting current may be performed only
in simple geometrical cases. Particularly, in the case of the elec-

(12)

g

.&

(
.

)
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trode in the form of a plate of dimensions sufficiently great as
to allow to ignore the influence of the ends, an exact solution
leads to the expression for the total limiting current intensity *:

0.67ec DR D sy y/21 /2

1
v'/e

(127)

Jlim:

coinciding with equation (12) in the order of magnitude.

In other cases, for instance in the case of a rotating cylinder or
disc, or in a case when the solution flows past such electrodes, or
is drawn past them by means of a stirring apparatus, the formula
(12) may be made use of as far as the order of magnitude is con-
cerned. This circumstance is connected with the fact that, as calcu-
lations show, the thickness of the boundary layer & is always, by
the order of magnitude, connected with the rate of flow by the
relation (3), although, of course, the numerical coefficient shall be
different in different geometrical cases.

5. The theory of the diffusion boundary layer in the case
of a turbulent flow

In the preceding section we have exposed the theory of the dif-
fusion boundary layer for the case of a laminar flow of a fluid past
the electrode. We have not considered there the question as to wheth-
er the flow of the fluid outside the boundary layer was laminar
or turbulent, inasmuch as only the processes taking place within the
boundary layer play a significant réle for the passage of the current.

However, at very large Reynolds numbers (Re ~ 10° for a quiet

flow of the fluid and at smaller numbers for a perturbed one),

turbulence of the stream of fluid takes place not only in the volume,
but inside the boundary layer as well. Here the picture of the current
passing through the solution is modified essentially, and the former
conclusions lose their force. We shall consider further on the question
of the passage of the current in the presence of a turbulent boundary
layer &.

8 This section is intentionally written briefly, since the hydrodynamic
scope of the question is of less interest for physical chemists. For acquaintance
with the theory of turbulence we shall refer the reader to a monography by
Goldstein in «Modern Hydrodynamics», Vol. I and II, Oxfard, 1938.

L*
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Let us write out, first of all, equations of motion of the fluid
in a turbulent boundary layer. If we suppose, for the sake of sim-
plicity, that the flow takes place along a wall of small curvature
in the direction of x axis, and if we shall represent the tangential
and the normal component of velocity as

v=t+v,

u=u-tu’,

where u and © are average with respect to time values, and u’, v’ are
turbulent pulsations, then the corresponding equations are
du dv
%t % dy( 5———u1 (n

ou
The term v 5% represents the flow of the momentum in the direction

perpendicular to the wall due to viscosity, and the term u’v’ repre-
sents the flow of the momentum due to turbulent pulsations (divided
by the density of the fluid). At not too small distances from the
wall, the latter turns out to be many times greater than the first,
so that we may neglect the influence of viscosity. Only at very small

distances & from the wall, due to the great value of the gradientg—l’: ;

bot_,h of the terms become equal to each other, after which the term
o g - s

ygs begins to prevail over the term u” »’. In other words, at values of

y <& the transfer of the momentum in the fluid is conditioned in the
main by viscosity.

As is known, this region bears the name of the viscous sublayer.
We wish to einphasize that, in spite of the general opinion, the tur-
bulent pulsations of velocities inside the viscous sublayer do not
disappear by any means, and the motion does not become laminar.
On the contrary, they are of the same order of magnitude as the ave-
rage velocities. It is only the flow of the momentum transferred by the
turbulent pulsations that is small.

Let us turn now to equations of transfer in a turbulent boundary
layer.

The equations of transfer will have the former form (8) of
section 4, however, all of the quantities shall now change statistically
in time.. Therefore, in all the final expressions we must average with

of a substance transferred by molecular

_here the latter may be neglected altogether. At very small distances
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respect to the time. The effective concentration ¢ may be represent-
ed in the form

c=ec4¢,

where ¢ is the average (with respect to time) concentration, and ¢’
is its pulsation part.

Inserting this value of ¢ and also the expressions for « and v given
above into equation (8) of section %4, and then averaging with res-
pect to time, we may write the equation of transfer in the form

»
—7e).

We may affirm, first of all, that inasmuch as in the case of a tur-
bulent regime of the flow the migration of ions is separated and the
passage of the current through the solution is described by an
equation of a purely diffusion type, there remains valid the former
conclusion as to the existence of a limiting current that may flow
through the solution and corresponds to the boundary condition ¢ = 0
on the surface of the electrode.

Due to very energetic stirring of the solution when there is a
turbulent flow, the values themselves of the limiting currents are,
considerably greater than in the case of a

-3 =Q 9 e
UorTC o™ oy oy

(2)

generally speaking,
laminar flow.
Considering the equations of the transfer we see further that, away

from a solid wall, the flow of the substance transferred by turbulent
pulsations of the velocity v'c’ would be much greater than the flow

aaa Ae
diffusion D(;—; , so that

from the wall, when y < &', the transfer of the substance would, on the
opposite, be realized in the main by molecular diffusion, inasmuch

: a
as here the gradient (i would be very great.

We shall name this region the diffusion sublayer.

We see further that away from the wall, when in equations (1)
and (2) we may neglect the viscous and the diffusion terms respecti-
vely, the equations of motion and of transfer become similar.

Therefore, there is here a full analogy between the transfer of the
momentum and the transfer of the matter in a flowing fluid.

;d
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This analogy would remain in force in the case of small values
of y as well, if the quantities v and D would have close numerical
values, i. ¢. the Prandtl number would be of the order of unity (which
is the case usually in heat conduction). Inasmuch, however, as the
coefficient of diffusion is always much less than the viscosity, it is
clear that the thickness of the diffusion sublayer 3’ is less than the
thickness of the viscous sublayer 2. Indeed, in the case of transfer

of matter the diffusion and the turbulent flows become equal to
each other at relatively high values of the gradient -g-;, i. e. clo-

ser to the wall than takes place usually for similar quantities in
the course of transfer of momentum. A :

Therefore, the entire turbulent boundary layer may be divided
into three regions:

1) the region of the nucleus of the turbulent boundary layer
y > 48, in which both the transfer of the momen(um and the trans-
fer of matter are realized by turbulent pulsations;

2) the region & =< y << 3, in which the (ransfer of the momentum
is realized by means of a viscous mechanism, while the matter
is transferred by turbulent pulsations, and finally

3) the region y << &, in which the transfer of the momentum is as
formerly realized by a viscous mechanism, and the matter is trans-
ferred by molecular diffusion (diffusion sublayer).

The viscous sublayer includes, evidently, both the latter
regions. The exact relationship between 8" and 3 shall be given
below.

From all that has been said above it is clear that between the
phenomena we are interested in of the transfer of matter and the
transfer of momentum in a turbulent flow of fluid, revealing itself
in the form of the friction stresses acting from the fluid on the solid
wall. there is a close connection and even a certain analogy, although
not a full one.

This circumstance, as well as dimensionality considerations may
be made use of in order to write the general expression for the {low
of matter thus found across a turbulent boundary layer. The density
of the limiting current shall be evidently equal - to g is obtai-
ned from the condition ¢ =0 on the surface of the body and ¢ =¢®
beyond the limits of the boundary layer.

—
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As is shown in hydrodynamics, the shear stressesacting per cm.*

ot the solid wall may be always represented in the form of
c = Ci (Re) E‘E_)L )

where p is the density of the fluid, u; is the average velocity of its
flow, and r; (Re) — a certain function of the Reynolds number,
bearing the name of local coefficient of resistance.

The form of ¢; depends, of course, on the form of the surface flown
past and on the distance from the front stagnation point. Analogous

relations hold for the total friction forces.
As far as the flow of matter ¢ transferred by the turbulent flow

of the fluid to the em.?of the surface is concerned, it is clear that
it cannot depend explicitly on the viscosity of the fluid vand on %he
coefficient of diffusion D. Therefore, according to dimensionality
arguments, it is clear that ¢ must have the form

g=1(Re, Pryup,
inasmuch as there are no other dimensional values, except u; and
¢;, by means of which it is possible to compose the quantity hav-

ing the dimensionality of g¢.

For the particular case of the smooth plate, we have obtained an
exact formula for f (Re, Pr). _

Inasmuch as into these formulae enter unknown constants cha-
racterizing the turbulent transfer of matter in a stream, they
cannot be made use of for direct finding of ¢. On the contrary,
however, by measuring ¢ it is possible to find the values of these
important constants.

For finding the transfer of matter it is necessary to know the

‘law of the distribution of velocities, and concentrations in the dif-

ferent regions of the stream considered above.
As is known, in the region of the turbulent boundary layer,
there takes place a logarithmic law of distribution for the ave-

rage rate of flow u,:
u, =1V, 1g L fue=1V,lg ¥ +us,
where u; is the velocity on the boundary of a viscous sublayer

—»\,%, V, is the characteristic velocity of the stream equal, to
]

-

V s/ and y is some constant.
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Within the viscous sublayer the momentum is transferred by
a viscous flow. The velocities of a viscous flow uys. and Vyise are,
as previously, expressed by formulae (7) of section 4, where, how-
ever, & denotes now the thickness of the viscous sublayer, U, is the
velocity on its boundary, i.e. u;, and due to smallness of & the
development may be stopped at the first term.

As concerns the average velocities of the turbulent flow within
a viscous sublayer, as L. Landau has pointed out to the author,
they may be obtained from the following considerations.

Since on the wall all the velocities vanish, close to it for the
average velocities of the turbulent motion it is possible to write
(with the exactness up to small quantities of a higher order):

U, = ay 3)
k 3"

by*.

In the development v, the terms of the first order are absent, inas-
muchas, as isseen from the equation of continui Ly (see also section 4)
the order of magnitude of the normal component of the velocity
exceeds the order of magnitude of the tangential cemponent by an
unity. ’

Inasmuch as when y ~ & we have definitely s, ~ 2, and vyje ~
~ v, the constants ¢ and b must be of the order:

<

Il

2

a~~ ~g ’ b~ 313 3

so that in the entire second region the velocities of the viscous and
the turbulent motions are exactly of the same order of magnitude.

It is easy to see, however, that the transfer of momentum in
a viscous sublayer is realized in the main by the viscous motion.
Indeed, the flow of momentum transferred by the turbulent pul-
sations would be equal to (see Goldslein’s monography, referred to
above)

- du agviL,

Iurh == —PU'U’= - p)d} -d—y= ——Tya

and small as compared with the flow of the momentum transferred
by viscous motion ' V
T oV,
i vige V™3
Gvise = Pv*&y 3

P 3

‘—‘—'——-—___—1
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G, I e e

at y < ¢, so that here
pYly
)

G~ Tyige —

The distribution of velocities being known, we may find the
transferred flow of matter.

According to what has been said above, in the first and second
regions Lhe flow of matter is transferred by a turbulent motion
of the fluid. As follows from the general theory of transfer in the
course of turbulent motion, for the flow of matter we may write
(similarly to the way itis done in the dynamic theory of gases)®

g=—0'¢’ = — v~ (4)
where the quantity % represents the mean free path of turbulent
pulsations (mixture length). :

Close to the wall, throughout the boundary layer, A may be
developed into series of power of the distance to the wall, and we
may limit ourselves to the first term, having written

L=ay.

As far as v is concerned, it has a different value in the first
and second regions. Precisely, in the first region we may, according
to Karman, write

P = du
l/ ut = l/vg o>~v -—_;l (E — 1‘{V0.

Substituting this value of o and X into (4) and integrating, we

gel
BQ

Clz-iTlg

ol

+ Céy (5)

. 1 :
where ¢; is the value of ¢ at y==2 and ?:a,. In the second region

¢, is expressed by formula (3’). Therefore here

av 4 de
I=—n¥ ay-
»
9 K4arman, Proc. of the 4th Int. Congr. for Appl. Mech., Cambridge..
p. 77, 1934.
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For the average concentration we get

= ey
c‘.’ \ "V:l y_ |)> + Cgr

where c;- is the value of ¢ at y=2".
Finally, in the third region, when y <3’ the transfer of mat-
ter is realized by molecular diffusion and for g we get

de
g=—D Iy
and
ca=_f§y (y<a’)
When y =28’ the flows of matter transferred by turbulent pul-

sations and by molecular diffusion become of the same order of
magnitude. Therefore, for 2" we obtain:

b (?)""‘a. ; 6)

The relationship written down here is similar to the one writ-
ten down by us for the case of a laminar boundary layer.
From equations (2) and (5) we get, evidently,

I

(El —c3) (Tl«l—ua)

a®y%c

P (‘21 — uy)

Eliminating ¢;, we find
Vie,

g ——— ® /1 1> i T
aiy? ["‘_"] ava \ 82 o7, —E]?s

After simple tranformations we get

CrbyCy

= — X = ’ (7)
2 [A-i— (Pr;” = A)B‘/c_é]
where
2 V%
i 1 u
€= ——= ==
f <2, A a7 and B 7 const

lal

- Thus, we have established the form of the function ¢ (Re, Pr)
{or the case of a smooth plate. It really depends slightly on Re. The

=T
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value of constants 4 and B cannot be determined from the experi-
mental data available at present and calls for new scrupulously
performed measurements of the limiting currents at high Reynolds

- numbers. Our formula differs considerably from a similar formula

obtained by Karman * for high Prandtl numbers. However, we
cannot be convinced by its derivation, since in the course of this
derivation the difference between 3 and &' was not taken into account,
while unfounded suppositionas to the existence of a wide intermedi-
ate region between the viscous sublayer and the turbulent nucleus
of the stream was assumed. Besides, Karman takes for granted. with-
out any grounds for it,that the constants in the logarithmic laws
of distribution of velocities and concentrations have the same value.

In the case of low Prandtl numbers, the formula obtained by us
differs little from that one deduced by Pran d t 1'. However, the
latter is not wholly correct, since Prandtl also made use of the suppo-
sition of the equality of constants in the logarithmic laws for ¢ and .

In conclusion, we wish to emphasize that in the case of rough pla-
tes the above results lose their force. From the character of the con-

~ clusion it is clear that the critical dimensions of the roughnesses

that may change noticeably the character of stirring of the fluid
will be of order of &’ (but not of 2), i. ¢. very small.

Making use of the expression, obtained as a result of the best
measurements, we get:

e (D)Us 30v (D)l/a /3 i

f'"‘"

. It is clear, from the physical viewpoint, that the roughness of the
. electrode,

hindering the motion of the fluid and hampering the
stirring in the course of the turbulent flow, must also diminish,
ceteris paribus, the magnitude of the limit current.

In other cases f(Re, Pr) represents a certain function of Rey-
nolds and Prandtl’s numbers, the form of which may to a certain
extent be determined from considerations connected with the
existence of the analogy pointed out above between the transfer
of matter and of momentum.

Precisely, if the Prandtl number Pr were equal to unity, so
29, 487 (1928). '

B Prandtl, Physik. Z.,

S s e v — )
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that this analogy would be complete, then, evidently, there would
hold the relation
{(Re, 1) =uac,

where « is a numerical factor (by no means equal to unity, gene-
rally speaking, as is usually erroneously assumed in similar cal-
culations of the theory of heat conduction).

If, however, Pr == 1 and the similarity of the transfer of matter
and of the momentum is not complete, we may still write

f(Re, Pr)=9¢ (Re, Pr) ¢;(Re),

where ¢ (Re, Pr) is some new function of Re and Pr, concerning
which we may but affirm that it depends to a relalively slight
degree on the Reynolds number and, moreover, in such a way that
at Pr=1, ¢(Re, 1) turns into a constant a. Therefore, for the den-
sity of the limiting current in the general case we may write

’ (1)

Already from the latter very gencral expression, important elec-
trochemical consequences may be derived. Precisely, inasmuch as
the coefficient of resistance itself usually decreases slowl y with the
iricrease of Re or does not depend on Re at all, it is possible to
affirm that the limiting current must be proportional to u}, where
the power index n is somewhat less than unity or simply equal
to it. Here, inasmuch a8 the character itself of the dependence
of ¢; on Re turns out usually different in different regions of Rey-
nolds numbers, the value of n may depend on Re.

Let us consider three cases important from a practical view-
point: an electrode having the form of a smooth plate of large
dimensions, a rotating disc and a cylinder rotating inside another
coaxial cylinder at rest. The total coefficient of resistance of a plate

with a degree of exactness sufficient for our purpose may be writ-
ten in the form of

Jim=eg (Re, Pr)cuc,.

¢, ~0.07 Re™'/s,

so that the total limiting current may be proportional to the velocity
of the flow u; to the power */,. The turbulization of the flow takes
place when Re~3x10%in a quiet flow, but may occur also at
much smaller values of Re~ 10*, if the flow running on the plate
is highly perturbed.

In the case of a disc, the coefficient of resistance is expressed

.

» -
e —

ﬁ'——_—
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by an approximate formula of the type ¢;~Re™/s so that the
limiting current is again proportional to u;~rw to the power */;.
Turbulence sets when Re~ 5x 10°,

Finally, for a rolating cylinder, it is possible to consider very

roughly ¢; ~ Re0t [where Re ::‘—“V—r(r2 *rl)] . r, being the radius of
the inner rotating cylinder and r,—the radius of the outside resting
one, so that the limiting current is proportional to the rate of rota.

tion to the power 0.6. As is known, the motion of the fluid in this
case is unstable and turbulence sets on relatively very early.

6. Discussion of the results obtained and comparison with the
experiment

In order to check the theory exposed above, we may make use
of a large number of papers published at different periods, in which
the concentration polarizationin the course of electrolysis in various
conditions, or the rate of heterogeneous reactions, in particular, the
rate of the dissolution of metals, were studied.

In the case of electrolysis, usually the full volt-ampere charac-
teristic (polarization curve) of the discharge with various kinds of
stirring of the solution had been obtained.

As far as the rates of heterogeneous reactions are concerned,
in order to check the theory we may make use of the data relating
to the cases, when the general rate of the reaction is determined
by the rate of the convective diffusion of some agent, either from the
solution towards the surface upon which the reaction takes place
or away from it into the solution.

A great number of heterogeneous reactions is described in litera-
ture, the rate of which is determined by the supply of reactant to or
away from the region where the reaction takes place, but not by the
rate of the chemical reaction itself, which may be considered here
arbitrarily high. The quantity of the matter that has participated
in the reaction will in'these cases be determined by the diffusion cur-
rent of that reactant, the supply of which to the reaction region
determines its full rate.

Prior to proceeding directly to compare the theory of the dif[us_i on
boundary layer with the experiment, it is necessary to discuss the
possible sources of inaccuracies of the theory and the limits of its
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applicability. The application of the theory is limited first of alk
by the requirement that the Reynolds numbers of the flow of the fluid
past the electrode be sufficiently large as compared with unity,
so that the Prandtl theory of the boundary layer might be made use
of. Practically this condition is always realized.

The dependence of the diffusion coefficients on the concentration
of the solution that has not been taken intc account by us is a source
of a possible inaccuracy of the theory. In reality the diffusion of ions
is realized with a varying diffusion coefficient, inasmuch as the
concentration of the solution changes noticeably from point to
point within the diffusion layer. The dependence of the diffusion
coefficient on the concentration is relatively slight and cannot
change the order of magnitude of the quantities obtained. It can,
however, tell on the value of numerical coefficients. Also, in the
theory the influence of natural convection on the transfer of ions
in the solution was not taken into account. It is_clear, however,
that in the case of a sufficieutly energetic stirring this influence
would be insignificant.

The most serious shortcoming of the theory exposed above is the
fact that the expressions obtained for the limiting current held only
for such a case, when there are two kinds of ions in the solutions,
or when the concentration of ions liberating at the electrode is small
as compared with the concentration of the other ions.

Already in the case of three kinds of ions, we have been forced
to restrict ourselves to the investigation of the motion of ions in a
resting diffusion layer, as was done in the old Nernst theory 1.
We may, however, assert that qualitatively the formulae for
the effective thickness of the diffusion layer obtained for a binary
electrolyte hold also for the case of a solution containing three
or more kinds of ions.

Therefore, although in this case we have not succeeded in find-
ing an exact solution of the equations of convective diffusion, and,
consequently, the exact expression for the diffusion current, still
qualitatively we may, as previously, make use of the expressions
obtained above.

As we have emphasized more than once, of essential significance
is the circumstance that the formulae for the diffusion current hold

" Levich, tobe published shortly.
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qualitatively not only for an electrode representing a plate in a
flowing liquid or a rotating di:c, for which cases they were derived,,
but also for electrodes that represent a ‘cylinder rotating around
one of the axes.

Both of the circumstances pointed out play a very essential réle:
in comparing the theory with the experiments performed usually
in complicated geometrical conditions and in the presence in the
solution of a great number of different kinds of ions, as well as in the
application of the theory to the practice of eléctrolysis or electrode.
position.

As far as the character of stirring is concerned, the greater part
of the performed measurements may be naturally divided into three
groups: experiments in which mixing was reali.ed by revolving
anelectrode of any shape; experiments with mixing of the solution
by a mixer; and experiments in which attempts were made to
exclude mixing altogether.

In section 3 we have already pointed out that it is practically
impossible to get rid of the natural convection, with the exception

~of the case of non-Newtonian fluids. Therefore, we shall not consi-

der here at all the experiments of the last type.

As far as experiments in which the mixing of the solution
is performed by a mixer are concerned, they have a number of
serious shortcomings. The most important of these is the indefi-
niteness of geometrical conditions of the experiment. It is clear
that the character of stirring will in this case depend on the shape
of the mizxer, on its size and the distance from the electrode, on
the shape of the latter, etc.

Besides this, in the case of very high rates of rotation of the

. mixer, the mixing of solution will be strongly influenced by

the formation of the regions of rarifications behind the paddles
of the mixer, due to the cavitation phenomenon—a phenomenon
well studied in the case of propelling screws.

Therefore experiments with the mixing of the solution by a
mixer are unsatisfactory from a theoretical viewpoint.

However, it is possible, apparently, to make use for a yualitative
control of the theory, of the data of such experiments with mixing
by means of a mixer in which the size of the mixer was sufficiently
large as compared with the gap between the electrode and the mixer
paddles.
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In this case the electrode may be regarded as a plate past which'

moves a given plane-parallel stream of the fluid dragged by the
mixer. From the theoretical point of view, stirring by a flat revolving
disc is the simplest method of mixing the electrolyte. The theory
of this method may be developed to the end, as was shown in section 3.
At the same time. it is exactly this method that is used most fre-
quently in practice of eleetroanalysis. Unfortunately, up to now
there have been no sufficiently precise experiments performed with
a revolving disec. Realization of such experiments would be of
grest interest.

In a large number of published papers the measurements were
performed without a sufficiently clear comprehension of the hydrody-
namic picture, in complicated geometrical conditinns, that made dif-
ficult the quantitative analysis of the obtained results. In the majo-
rity of the experiments, in particular, there was used as a revolving
electrode a cylinder revolving about an axis passing through its
centre and parallel to the generatrix. Apparently, the geometri-
c2] conditions of flow were considered to be simplest in this
case. In reality, however, the investigation of convective diffusion
in the case of a revolving cylinder is bound with considerable
difficulties. For an infinite cylinder the problem has no stationary
solutions at all: the concentration of the solution turns out to be
infinitely increasing as the logarithm of the distance from the axis
of the cylinder, similarly to the case of an electric potential in an
analogous problem of electrostatics. In the case of a cylinder of
finite length, the problem becomes mathematically very difficult.

Therefore the data of the experiments with the electrode in the
form of a revolving cylinder may be used only for a qualitative con-
trol of the theory. After these general remarks, we may go over to
a direct comparison of the results of the theory with those of the
experiment.-

The existence of a limiting currentthat may pass through the so-
lution atgiven conditions of mixing is the main conclusion of the
theory exposed. This conclusion relates to the case of a binary elec-
trolyte, as well as to the case when there are in the solution additions
of indifferent electrolytes, the existence of the limiting current being
independent of the specific geometricai conditions, but being con-
nected with the existence of a diffusion boundary layer itself. The
curves shown in Fig. 3 demonstrate the general picture of the depen-

~
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- the limiting one, a linear dependence e

the other hand, by the universal quan-
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dence of the current passing through the solution on the poten-
tial difference applied between the electrodes for a revolving
electrode.

We see that in full accordance with the theory in the case of asmall
potential difference V, when the passing current is much less than

between J© and the current density j ta- P D

kes place, i.e. we find ourselvesin are- 50 | Il |
gion where Ohm's law can be applied. 311 T . I /
When the applied potential difference |
increases, the curve bends and becomes
parallel to the abcissa at j=j, and
V' = Viip- The value of the critical po-
tential difference Vy;,, as may be seen
from formula (40), seclion 3, is deter- I
mined, on the one hand, by the ohmic i
potential in the solution down to the 7

-

boundary of a diffusion layer, and, on %7 ¢ w9
ancdu polential
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Fig. 3. The Lypical polarization
curves for various concentrations
of solution.
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The greatest interest is offered by the dependence of the value
of the limiting (diffusion) current j,;, on the fundamental quantities
that determine the properties of the solution and the character of
stirring. There are, first of all, the concentration of the solution ¢,
then the rate of the flow of the fluid or of the revolving of the elect-
rode U, the viscosity of the fluid v and the coefficient of diffusion D.

* Besides, the dependence of the limiting current on the temperature is
" also of interest. We shall discuss first qualitatively the general charac-

ter of the dependence of jj, on the values enumerated, which may be
done on the basis of a rich experimental material, inasmuch as the
geometrical conditions of mixing (the shape of the electrodes) and the
number of the ionic species represented in the solution influence
but little the character of the dependence itself. Afterwards, we shall
go over to the quantitalive comparison of the calculated and the
observed values of jjjn in Lhe scarce number of cases when such
a comparison is possible.

The direct proportionality between the limiting (diffusion) cur-

Acta Physicochimica U.R.S.S. Vol. XVII. No. 8—G. 5
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rent and the concentration of the solution called for by the theory
was already established by Nernst and Merriam’s experiments?,
and served in its time as one of the main argumentsin the estab-
lishing by Nernst of the diffusion layer theory.

These results by Nernst and Merriam were confirmed repeatedly
in more recent works. Fig. 3 shows the results of very exact measure-
ments of Wilson and Hughes' of the limiting currents for
the reduction of Fe+++in Fe+. In all cases the direct proportion-
ality between the diffugion current and the concentration of the
solution is observed with great exactness.

Particular theoretical and practical iuterest is offered by the de-
pendence of the 'imiting current on the velocity of motion of the fluid.
As we have seen above, the theory leads to a proportionality of the
Jimiting current to the square root of the velocity of the fluid for a
laminar flow and to a proportionality to a higher power of velocity
for a turbulent flow past the electrode. The power index increases
in the latter case from the value of 0.6—0.8 almost up to unity with
the increase of the Reynolds number of the flow. As far as the expe-
rimental data are concerned, it has been repeatedly pointed out in
literature that there is a noticeable difference between the results
obtained by different authors concerning this point. For instance, the
data obtained hy Eucken?® are in good agreement with the power
index '/, (see below). Nerns| and Merriam gave an empirical formula
for a limiting current with the index .6 2. Bruner! has obtained
a omewhat greater index (0.66). Eucken ™ has pointed to a propor-
tionality of the limiting current to the revolving speed of the electrode
to the power 0.5—0.6. In van N ame’s '* experiments the diffusion
current turned out to be proportional to the velocity to the power
0.7—0.9. Aeccording to Wildermann', the index is equal
to unity. In King’s'® experiments on the rate of dissolution
of zing the peripheral speed of the disolving cylinder was brought
up to 27 m./sec. (which corresponds to the value of Reynolds num-
bers of about 2.7 x10%). Here the obtained results correspond to a
progortionality of the diffusion current to the rate of rotation to the
power 0.7—0.8.

12Wilson and Hughes, Ind. and Eng. Chem., 607 (1923).
13 Van N ame, Amer. J. of Science, 29, 237 (1910).

W Wildermann, Z. physik. Chem., 66, 445 (1909).

3 King and Schack, J. Amer. Chem. Soc., 57, 1212 (1935).
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Such a discrepancy in the experimental results may be naturally
explained by the different degree of turbulization of the electrolyte
which flows pust the electrode

In new experiments by Eucken special precautions were taken
in order to insure a laminar flow of the fluid: and the lowest xlue
of the power index of the velocity !/, was obtained in good agreement
with the theory. In other experiments, no precautions to insure
the laminar flow of the electrolyte in the neighbourhood of the
electrode were taken.

In Nernst and Merriam’s experiments a thin wire was used as a
revolving electrode: the number of revolutions was relatively sm:l]
(up to 600r. p. m.), so that the Reynolds numbers must have been
rather small, and a strong turbulization of the current was not to
be expected. In Brunner and van Name's experiments mixing was
effected by a mixer moving close to a flat elestrode.

In Brunner’s experiments the Reynolds numbers were of the order
of Re~2000, so that the turbulization of the flow also should have
been still insignificant, but, judging by the results (n ~ 0.66), already
noticeable because of the poor geometrical conditions.

In van Name's experiments there was, apparently, strong turbu-
lence of the carrent. The Reynolds numbers in these experiments
reached the value of Re~10'—10?, while the geometrical conditions
also favoured the turbulence of the current.

King’s data relate wholly to a turbulent flow past the electrode
Reynolds numbers lie between 3 x10* and 2x10°. while the model
dissolved in these experiments had the shape of a cylinder or disc.
It is known, however, that, when a cylinder is rotating even in the

- case of relatively small Reynolds numbers, the motion of the

fluid is not stable and becomes turbulent.

Thus, it is, apparently, possible to assert that the discrepancy
observed in the experimental data is in reality connected not with
scarcely probable errors of measurements, but with the different
degree of turbulence of the stream of the fluid in different expe-
riments. On the whole, although no systematic measurements of the
limiting current in simple geometrical conditions (for instance, for
a flat electrode) were performed in a sufficiently wide range of Rey-
nolds numbers, which includes the regions of a laminar as well
as of a turbulent flow, the comparison of the data obtained by dif-
ferent authors demonstrates clearly that the character of the depen-

e

g 2




304 B. Levich

dence of the limiling current on the rate of flow is in a good agree-
ment with the theoretical conclusions.

The dependence of the limiting current on the coefficients of
diffusion is in general rather complex. In the case of a binary electro-
lyte the limiting current, according to formula (42) section 3, varies
inversely to the */, power of the effective diffusion coefficient D and
is proportional to the diffusion coefficient of the ions which carry
the current D,.

If different kinds of the ions are represented in the solution,
this dependence is still more complicated.

Since, however, the diffusion coefficients of different ions, with
the exception of ions H,0* and OH", differ from each other to a rela-
tively small degree, we may approximately consider that the
limitine current j;, is proportional to

].)im ~ 0.6 ( I)

Such a dependence is in a good agreement with Eucken’s mea-
surements reported in the work referred to above more than once,
and also with K i n g’s data on dissolution of metals', in which
there was observed a proportionality between the rate of the disso-
lution and the diffusion coefficients of different ions to.the power
of from 0.7 to 0.83. Although the power 0.83 is too large. we ought
to bear in mind that the diffusion coefficients depend on the con-
centration of solution, and in certain cases, as, for instance, in the

case of HCI, change considerably in the presence of salts, so that

the accuracy of these experiments is not high.
The dependence of the limiting current on the viscosity in the casc
of a laminar flow may be represented by the semi-empirical formula
Jiim ~ —1,— : _ (2)
Indeed, according to formulae (46) section 3 the limiting curr-

: ; D*!s :
en{ varies as Jim~ LI,G. On the other hand, however, with the
Y /

change of viscosity the coefficient of diffusion also changes, accor-

ding to the empirical law D.p=const. ;
Inasmach as the density of the fluid changes with the temperature

only to a very small extent, one may approximately consider that

D~ ¥ , whence the formula (1) given above is obtained.
A4

% King and Howard, Ind, and Eng. Chem., 29, 75 (1937).

-
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Formula (1) is in a good accordance with the data obtained by
King*'" when dissolving zinc in an acid: The viscosity of the solu-
tion changed by adding sugar. It was found then that the rate of the
dissolution varies approximately inversely to the viscosity. Taking
into consideration the relative roughness of the experiment, it seems

- scarcely possible to distinguish between the powers 3/, and unity.

The measurements of the dependence of jjju on the temperature
may be used only for qualitative conclusions as to the nature of the
factor determining the rate of a definite heterogeneous reaction bul
not for quantitative judgments as to the dependence of jiim on the
coefficients of diffusion or on the viscosity of the solution.

The rather slight dependence of the rate of heterogeneous reaction
on the temperature shows that the rate of reaction is limited by the
supply of the substance to the region where the reaction takes place,
but not by ils kinetics.

Because of the strong dependence of both quantities, entering
moreover into the expression for jj, in a complex combination, it

" does not seem possible basing on the temperature dependence to draw

any conclusions as to the proportionality of /i, Lo some power of
the diffusion coefficient or viscosity.

From all the above said we may conclude that the theory of the
diffusion boundary layer developed above is in a good qualitative
agreement with the experiment. However, as far as the quantila-
tive comparison is concerned, we have succeeded in doing it only for
Eucken’s experiments *. In these experiments the current passed
between two platinum electrodesin a solution of KI and KCl in the
presence of 17, Brrand H,O* playing ardéle of depolarizing agents.

One of the electrodes was represented by a resting plate of large

~ dimensions, so that the current passing through the solution was

always small as compared with the limiting current to this plate,
therefore it was possible to neglect the polarization phenomena on
this electrode.

The second electrode was a plate 0.28 cm. in height and 0.089 em.
in width. The stirring was realized in (he following manner: past the
second electrode there moved the exterior wall of the eylindrical
vessel containing the solution and the electrodes. The distance bet-
ween the electrode afd the moving wall varied from 0.05 up to 0.4 em.

7King, J. Amer. Chem. Soc., 537, 828 (1935).
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and was thus always greater than the corresponding thickness of the
boundary layer. The Reynolds numbers of the flow did not exceed
Re~10*. Here, as is emphasized by Eucken, the flow past the plate
remained strictly laminar, so that for the limiting current [or-
mula (12’) section 4 may be made use of. Table 1 shows that between
the theoretical and the experimental values for the limiting current
there is a wholly satisfactory agreement.

Table 1

The dependence of the limiting curreat on the
angular velocity

o= 88.3, J, . .=1.83 X107%A, J,, =1.15 X1074A;

cale obs
o= 10,8, J 1 =0.671x 10794, J ) ~=0.685x 1074A
WF ) ‘ v )=
wy “eale’y obs /]
“3 ('lcalc):_- (J()IJS)Q
1.97 | 1.14 1.0
1.50 1.22 - 1.1%
2.39 | 1.55 1.890% =

It ought to be observed that because of probably accidental
causes, just as good an agreement exists between the undoubtedly
incorrect theoretical formula of Eucken himself and his experi-
mental data.

As far as the quantitative comparison of the above results with
other experiments is concerned, this comparison is restricted, as has
been pointed out more than once, due to the differences in geometrical
conditions.

However, in spite of this, the agreemenl between the theory and
the experimental data turns out even more satisfactory than might
have beenexpected. There is,in particular, a quite good yuantitative
agreement with Nernst and Merriam's experiments?®. These authors
give for the thickness of the diffusion layer the empirical formula

_0.05
= 5

all

where Z is the number of revolutions, which amounted to several
hundreds per minute in these experiments.

ey e p——— |
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In the range of the number of revolutions Z pointed out this for-
mula is in a yood quantitative agreement with formula (45') section 3.

Summarizing all that has been said, we are able to conclude that
the exposed theory is in a very good agreement with the experiment
However, a precise experimental study of the phenomena of con-
centration polarization in a wide range of Reynolds numbers and sim-
ple geometrical conditions, allowing to establish decisively the
quantitative agreement between the theory and the experiment,
is highly desirable.

In conclusion T wish to express my deep gratitude to Prof. L. Lan-

dau and Prof. A. Frumkin for interest in this work and valuable
discussions of the results.

Appendix to section 3

The integral /, is equal
1
d1

L=\—- ——

2 0 ! '7(') "

0 nyj = (13 Bl = (3B ¢
(n,—nl)chl,Je dt—l—&e dt]+T'

0
0

e
In the last integral the denominalor never exceeds unily. There-
fore, the exponential function may be developed into series and
we have approximalely:
©)
C

(ny — nl‘) eD, lg—
nuf

y—

nyye'
() —
Tt (ny — ny) Dee

where ¢ is the value of ¢ at z=0 [in the plane of the dise,
sce (29') section 3].
Evidently, in the same approximation we have

o
¢4 (ny — ny) Die = o,
so that
g ~ (1 —n,) eD, 1 c(_ﬂ)
- T nyJ EON
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