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A. Torenin and N. Yaroslavsky
2:)6 

The light sensitivity of the solutions exhibiting the «halo­
chrome» effect seems to have not been nuticed before. The usefulness 
of infrared spectra for the detection of a photochemical change is 
demonstrated here. Further investigation along these lines was 

planned. 
Summaf)' 

A recording 5-prisms glass spectograph with a differential 
set-up using a thallofide photocell is descl'ibed, which permits: 
1) the sensitive detection, in the spectral range from f.. 0.8 p. to I, 
12 p., of feeble absorption bands (harmonics of the fundamental vibra­
tion frequencies), belonging to a component present at low concentra­
tion in a solution; 2) the elimination of the disturbing spectrum of 
a component present in excess in a liquid mixture, and 3) the detec­
tion of small changes in the intensity and position of absorption 
bands, produced by association or formation of molecular compounds 

(complexes) between the components. 
The method has been applied to the identification of intermole­

cular and intramolecular coupling in the binary system C.HsNH~ + 
+C.HsNO and for solutions of (CHa)zCO, CH".C.Hs·CO,(C2H.),O 
in HCl, H

t 
SO., HNO , and CClaCOOH. Photochemically induceda

association 
2 
processes of C.H. molecules in the presence of AIBra 

have been l'evealed by changes in their vibration frequency. 

state Optical Institute, Received 
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The Theory of Concentration Polarization 

By B. Levich 

1. General remarks 

It is known that the rate of an electrochemical process on the 
sul'face of an electrode submel'ged into a solution is determined by two 
factors: by the J'ate with which the substance comes in contact with 

I the electrode, and by, the rate of the electrochemic&l reactions on the 
electrode. The ra te of su pply is ill i tseH determined not only by1 
the' rate of diffusion (and migration in the case of ions), but by the 
character of stirring of the solution as well. 

The purpose of the present work is to investigate the processes 
of stirring of the solutioll and their influence on the rate of supply 
of the iom; to the electrode. The question of the rate of supply to the 
electrode hal> beeu discussed ill litel'ature many times. There is a COll­

siderable amount of experimental work1dealing with this question, 
while the theoretical investigation in the case of stationary proces­
ses is confilied to two pa pel's of this kind. These are: N ern s t' 8 

paper 2 which offers a qualitative theory of the diffusion layer, at 
present generally accepted, and E u c k e II 'S3 that contains an atempt 
at an exact hydl'odynamical theory. Beside!:' these investigations, 
there is a number of others dealing with the non-stationary processes, 
which we shall not eonsider here. 

Nermt's theory has a qualitative character. According to this 
theory, the main change of the coneentration takes place in a very 

1 No yes and W hit n e y, Z. physik. Chern., 28. 689 (1897); B run· 
Iler and Tolloc.zko, ibid., 30, :!S3 (HJ04); Centnerszwer. 
Ibid., A, 141, 297 (19:1\J); Ro II e i', J. Phys. Chem., 29, 221 (1938); also 
Moe I w y n· H \l g h e s, «The Kjnetjcs of Reactions in Solution,), Oxford, 
1933 
. 2 Nernst, Z.physik.Chern.,47,52(1904); Nel'nst and Merriam, 
lllid.. OS, :135 (J905). 

3 E u eke n, Z. Elektrodwm., 38, ;\', i (19::12). 
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thin layer of the fluid dose to the electrode, which is called the dif­
fusion layer. It is supposed here that the thickness of the diffusion 
layer is so small that the motion of fluid within it may be neglected, 
and the motion of the ions may be regarded as taking place in a rest­
ing medium. ThilS supposition reduces the solution of the problem 
of the passage of the ion towards the electrode to the solutiou of the 
problem uf diffusion and migration of ion" in an immobile layer 
of a fluid of a certain small thickness 8; on the boundary of the dif­
fusion layer the concentration of ions must be equal to the average 

concentration of the solution. 
Eucken has iutegrated the equations for the diffusion and the 

migration of ions in the diffusion layer for the case when the ions 
of ouly one kind are the carders of the llurrent and pa"s through 

the solution. 
The value of the thickness of tIle diffusiun layer and its dependene0 

on the character of the flow of fluid aud OIl the gebmetrical conditions 
cannot be calculated by means of Nernst's theory which thui> turn& 

out to be but a qualitative theory. 
The Nernst's diffusion layer theory fails to be satisfactory not 

only because of the insufficiently; clear: foundation of its premises 
and because of its qualitative character, but also since it involves 
the theoretically inadmissible supposition .llS to the existence of an 
immobile layer of a fluid of considerable thickness close to the elec­
trode. At the same time, Nernst himself discovered experimentally 
the dependence of the thickness of the diffusion layer on the character 
uf stirring of the fluid and also on the temperature. the concentra­

tion of the 801ution and on other factors. 
On the other hand, the main conclu"iun of Nemst's theory as to 

the existence of a limiting diffusion curreu t, i. e. the greatest curreTlt 
that can pass through the solution, is remarkably well confirmecl 
by a number of experiments and does not cause any doubts. 

It will be shown later on that, while the fundamental supposition 
of Nernst's theory, as to the existence of an'immobile layer of the 
fluid close to: the electrode, does not correspond to the true state of 
things, still there is a region of fluid with linear drop of concentra­
tion that corresponds to Nernst's diffusion layer. 

We shall also find the dependence of the thickness of this region 
of the fluid, also named by us the boundary diffusion layer, on the 

character of motion of the fluid. 

Eucken's work contains an attempt at building up an exact 
hydrodynamical theory of the diffusion towlll'ds a plane electrode, 
surrounded by the solution moving with a relatively high velocity. 
However, in establishing the original equation, Eucken has allowed 
an inaccuracy which turns out to be essential for further investiga­
tion. Namely, as we shall show later on during the investigation 
of this problem, the equation of ~the convection diffusion towards 
a plane electrode in a flowing liquid reads as 

u oc +lJ iJc = D iJ2c 
iJx oy iJy 2 

where the x axis itl directed along the electrode, while the y axis 
is perpendicular to it; II and v stand for the xth and the zth compo­
nents of the velocity of motion of the fluid and I: is the concentration 
of solution. 

Here both of the terms on the left hand side of the equation have 
eAactly the same order of magnitude. Although close to the wall 

itself u is large as compared wi th v, still in the same ratio ~ is 

- f)c

large as compared with f)x'
 

However, Eucken puts the term v :; as small without any proof 

and omits it. This changes essentially the entire picture and influ­
ences on the final conclusions. 

Therefore, we are justified in considering that at present there 
is no theory that would allow us to find with sufficient foundation 
and accuracy the rate of supplyof matter to the electrode at definite 
geometrical conditions, and at a given regime of flow of solution. 
The building up of such a theory seems to be of obvious interest. 

It ought to be mentioned that besides the electrochemical interest, 
the calculation of the rate of supply of the substance to the electrode, 
of the rate of the diffusion in particular, offers a purely hydrodyna­
mical interest as well. In the case of diffusion, particularly the dif­

fusion of ions, the quantity ~ = ; , called Prand tl' s diffusion num­. 
bel', reaches the value of several thousands. Thus. in this case we deal 
with a peculiar limiting case of hydrodynamics, which may be cal­
led the hydrodynamics of Prandtl's large numbers. The investigation 
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of these diffusion phenomena with Prandtl's large numbers at a solid­
liquid boundary and at a liquid-liquid boundary, that is of interest 
in the theory of heat transfer, may al'parently be carried out in ade· 
quately pure cond itions onlyb y means of the electrochemical methods. 

The direct investigation of these processes in the phenomena 
of hea t transfer is exceedingly diffie-ult, due to the great depen­
dence of the viscosity of fluids on the temperature. 

2. The general equations 

Let us, first of all, obtain the general equations for the con­
centration of ions in the solution and for the distribution of the 
potentials in the mixed solution. Considering the motion of the 
solution being given, for each kind of ions present in the solu­
tion \ve may write down the equation of the transfer as 

~aCi.+ (v grad) Ci =Di~ci+ulnj div (c j grad 9), (1)
t . 

where ci is the concentration of ions of the ith kind, D i and 
Uj - the coefficients of the diffusion and the mobility, n i - the 
valency, 9-the potential of the electric field. 

The potential 9 sa tisfies the Poisson equation: 

4r.e ~ 
~"'= -- ~ n·c-

T s ~ ," 

where e is the dielectric constant of the medium. 

(2)
 

The set of equa tion (1) for each kind of ions present, equa­
tion (2) and the Navier-St.okes equa tions together with the boun­
dary conditions determining the velocity of the fluid v, give the 
complete system of equations, the integrat.ion of which allows to 
determine the' unknown concentrat.ions Cj and the potential 9 in 
the solution. 

Since, however, equations (1) are non-linear partial differen­
tial equations, the solution of this system of equations in a gene­
ral form meets wi th unsurmountable ma thematical difficulties. 
Therefore, we shall confine ourselves to the simplest cases of the 
binary electrolyte (two kinds of ions) and to the case of three 
kinds of ions, with the number of ions of one kind being very 
small as compared with the number of ions of other kinds. 
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Let us investigate, first of all, the case of a binary electrolyte. 
Let c1 and c2 stand for the concentrations of both kinds of ions, D 
and D z for their coefficients of diffusion, and n l and n for their­t 

2
valencies. Further, let v be the velocity of the fluid and 9 the electric 
potential. Then, regardless of the character of the motion of the 
fluid, we may write down the general equations of the transfer of 
ions in the electrolyte: 

~:l+(vgrad)cl=DldCl+ n~~l div (c
1 

grad 9), (3) 

aC2 
( d) D A nzeDz d' ( d)at + v gra C2 = 2 uC 2 + kT IV C

2 
gra 9. (4) 

Here, in the second member on the right-hand side, the mobili ­
ties of ions u1 and U 2 were substituted by their expressions through 
the diffusion coefficients D 1 and D the well-known Einstein rela.2 , 

tion having been made use of.
 

The potential !fJ sa tisfies the Poisson equation:
 

47te 
D.ep= -~ (n1c1+n c ),2 2 (5) 

where E is the dielectric constant of the solution and e _ the ele­
mentary charge of the ion. J 

Equations (3), (4) and (5) taken together serve, in the case 
of a given v, for determining the three unknown functions c c 
and 9. ll 2 

Since the equations (3) - (5) are non-linear partial differential' 
equa tions, the solution in a general form would offer unsurmountable 
mathematical difficulties, being at the same time of no physical 
interest. However, these equations may be considerably simplified 
by means of simple transformations. 

First of all, we may suppose that the solution, in the main 
of its bulk at any rate, is electroneutral, so that instead of equa­
tion (5) we may write 

(nlC I +n 2c2 ) = O. 

As it is known, t.he condition (6) 
wi th a sufficient degree of accuracy, 
the region of the double layer close 
electrode. 

•
 

(6) 

is fulfilled everywhere 
wi th the exception of 
to the surface of the 
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Putting 
C = -?l2C (7)

1 

. and 
(7')c2 =+nl c 

we can write the following equations for the quantity c, which, for 
the sake of brevity, we shall call also t.he effective concentration 

of the solu tion: 
oc nlc]) . (8)at + (v grad) c = Dl~c + ---rr- dlV (c grad cp), 

(8')~T + (v grad) c = Di~C + nr~2 div (c grad cp). 

Subtracting the lower equation from the upper one, we find 

(D - D
2

) ~c + (n
l
D I -niDi) /T div (c grad cp) = 0. 

1 

Thus 
· ( d) kT(D 1 -D2 ) A (9)dIV cgra ~ = - (D D.)uC,e n1 1 - n2 i 

Substi tut.ing this value of div (c grad ep) into the equa tion for c, 
we may eliminate altogether the electr~c potential. We get here, 

in fact, 
oe nlD l (VI -D~r b.c-at + (v grad) c = D,~c (nl])l - n2])2) 

or 
f)c (10)at + (v grad) c = Dt:.c, 

where 
D = (n 1 -nil D l ])·, ( 11) 

';lD
I

- n
2
D

2
-- • 

I t is ca lled the effective coefficient of diffusion. 
Equat~on (10) represents the equation of convective diffusion 

and with the given v wholly determines the concentra tion of the 
solution C as a function of the coordinates and time, while 
equa tion (9) allows to find the distribution of the electric poten­
tial in the solution. Thus the electric field is to be totally elimi­
nated, and the problem of finding the distribution of the field and 
the concentration in the solution splits into two parts: a purely diffu­
sion part, where the solution of the problem of convective diffusion 
is obtained and where the distribution of concentration does not 
depend on the field explicitly, and a subsequent determination of 

j 
l 

1 

..: 

the electric field in the solution, according to the already known 
distribution of concentration by means of equation (9) . 

Equation (9) at once allows the integral 
~ . j

kT (nlDl-n~D2)cgrad'tl+e(Dl-D2)gradc=_n n ' (12)l 2 

where j stands for the veetor of current density. 
The integration of equation (12) allows to find the connec­

tion of the difference of potentia Is between the electrodes wi th the 
current passing through this solution, whic.h, in faot, is our 
final purpose. 

Further on, we shall solve the equations (10) and (9) in the geo­
metrically simple and at the same.,time experimentally important 
cases of electrodes in the form of a revolving flat discs and of a 
liquid flowing past a plate. We shall confine ourselves here to the 
case of a stationary current, so that we shall consider the concen­
tration of ions and the velocity of fluid as independent of time 
explici tly. 

Still another case, when the migration of ions in the field may 
be separated from the diffusion and the convective transfer, is 
the case of three kinds of ions, when the concentration of one 
kind is low as compared with the concentrations of the two other 
kinds. The equaHons of transfer have 

OCl - d D nleDl-at+lvgra ) c1 = l~Cl+~ 

~~2 + (v grad) c2= D/:>.c 2+ n2:~~ 

~~~ + (v grad) c3 = Dat1c3+ nr~3 

and the condition of electroneutrality 

the form: 

d' ( d)
IV c1gra ep, (13) 

div (c 2grad cp), (14) 

div (ca grad ep) (15) 

n l cl +n2C2 +onaca = 0, (16) 

where ex is a small coefficient as compared with unity. 
Usually, it is the current carried by the ions of the third kind; 

the conc.entration of which is low, that offers practical interest. 
In solving the set of equations (13)-(16) two cases must be 

distinguished. The first case is that one when only the ions of the 
third kind are liberated at the electrode, and the other ease is the 
case when two kinds of ions are liberated at the electrode, for in­
stance, ~e second and the third Ones. 
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In both cases we shall solve the equations (13) ­ (16) by the 
('3 are liberated, then grad CPo=O and the equations are reduced 

method of suceessive approxima tions . to the follOWing: 
• Let there be no ions of the third kind at all in the solution, in 

the zero approxima tion. Then the concentrations of ions of the first 
and the second kind will have the values c~ and c~, while the poten­
tial- CPo' all of these values being obtained from the equa tions (8) 
for a binary electrolyte. It is easy to see, however, that if the ions 
neither of the first nor of the second kind are liberated at the elec­
t)'ode, then -the only possible solu tion for c~, c~ and CPo shall read: 

c~ = const, c~ = const, epo = const. 

( d) ' D A + 0 /lleDl d' d'0v gra Cl = lUCl Cl kT lV gra cP, 

( d) D A '+ 0 1t2eDa d' d'0v gra C2 = 2UC2 Ca-W- lV gra ep, 

(v grad) C3 = D
3 
t.C 

3
• 

If, however, the ions present in the solution in large amounts 
are liberated, then c~, c~ and cp are certain given functions of z, and 
no longer constants. 

If, however, one of the ions present in large amounts is libe­
ra ted a t the electrode, then the corresponding expressions from 
the solution of the case of a binary electrolyte problem must be 
taken for c~, c~ and cp. 

In the first approximation we shall look for the solution of 
equations (13) -- (16) in the form: 

Cl=C~+C~, cs=ca,' 

The concentration c3 in this case must be found by means of the 
direct solution of equation (20). c

3 
being known, it is possible by 

means of equation (15) to express c; through c; and C , for instance, 
3 

and to eliminate the potential cp' from equations (18) and (20) by 
multiplying the first by np the second by It .. and subtracting them 
one from another. This allows, in principle, to find ('~, l'; and 
later cp', thus solving the problem to the end. 

ca = c~ + c~, cP = CPo + cP', 
where <, c~ and ep' are small additions, having the same order of 
magnitude as ca' . ' 

Inserting these values of cl1 Ca and cP into equations (13)-(16), 
we get 

(v grad) (c~ + c~) = .J)lA (c~ + c~) + nt~l div [(c~ + <) grad (epo + ep')], 

. d) ( 0 + .') - D A ( 0 + 0) + naeD2 d' [( 0 0 d ( '\]("', gra C2 (2 - a';'> C2 C2 kT lV Ca+C 2 ) gra CPo+CP I' 

/lseDa .
(V grad) C = DaACa + kT dlV [t3 grad (epo +cp')];s 

In other cases we have not as yet succeeded in simplifying the 
equation of the transfer by separating the migration in the presence 
of convection of the fluid. 

3. A rotating electrode 

Our next problem consists in solving for particular geometrical 
conditions and with a given character of stirring the general equa­
tions of transfer written down in the preceding section, 

In practice, the stirring of the solution is realized by means 
and the equation of electroneutrality will evidently be rewritten of natural or forced convection 

tJlUS: 
nlc~ + nac~ + emac3= O. (17)
 

Neglecting all the members containing the products -of small
 
quantiLies c~, c~, ep and C3 and taking into consideration the equa­

tions for c~ and c~, we find 

' D·" + nleDl d' ., d + 0 d'). (vgr·a d) cl = luCl -pj" lV(Clgra CPo clgra cp, (18) 

' D'" + naeD2 d' . 0 d + 0 d')(v grad) ca = auca ~ lV .(Cagra CPo ca gra cp , (19) 

(v grad) ca = Ds.ics+ n:~. div (c3 grad CPo)' (20) 

If we are dealing with the first case, when only the ions 

As far as natural convectioH is concerned, it originates in the 
solution mainly because of the influence of two factors: the non­
homogeneity of the solution between the electrodes and the nOh-uni­
form distribution of temperature in the flolution, which, if other 
causes are excluded by means of placing of the solution in a 
thermostat, may be connected with the evaporation from the surface 
of the fluid, 

It is quite difficult to ~et rid of the natural convection; however, 
on the other hand. the motion of the fluid in the condition of natural 
convecti'on may be very easily distorted by various secondary factol's. 
Therefore a theoretical inve!ltigation of the influence of natural con­
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vection on the current passing in a fluid would scarc.ely seem reasona­
ble. A much greater interest is offered by the case of forced convec­
tion, when the most energetic stirring of the solution takes place, 
and the influence of subordinate factors may be reduced to a mini­
mum. 

Artificial stirring of the solution is realized in practice by various 
methods, the theoretic.al advantage and shortcomings of which shall 
be dis('ussed in next section, dealing- with the theory of the boun­
dary diffusion layer. 

Here we shall confine ourselves to the case when the stirring 
of the electrolyte is realized by means of an electrode which has 
the shape of a flat disc of a sufficiently large area, rotating about 
an axis perpendicular to the plane of the disc with a constant 
angular velocity Ol. 

It turns out here that the problem of finding the rate of supply 
of the substance to the electrode may be solved exactly, without any _ 
approximations, and therefore offers great interest. 

At the same time, the revolving disc is very often used in practice 
and its theory has a practical value as well. Further on, we shall sup­
pose that the area of the electrode is sufficiently large; and that it is 
placed in a vessel with a solution of an infinite volume, so as to be in 
a position to neglect all the effects connected with the edges of the 
disc and the influence of the walls of the vessel. 

The problem of the motion of fluid in such conditions has 
been solved by K ar man t. We shall reproduce here this solu­
tion briefly inasmuch as the expressions for the velocities of 
the fluid shall be needed further on. 

Here we shall restrict ourselves only to the case of sufficiently 
small Reynolds numbers, so that the motion of the fluid might 
be considered as laminar. As has been established by K em p f's 
experiments 6, the flow of the fluid dragged by a rotating disc 
remains laminar up to Reyno Ids number Re '"V 106 It scarcely• 

seems reasonable to consider the convective transfer when there 
is a turbulent flow of the fluid in the case of a 1'0 tatirig disc, 
sinee the calculation of the regime of flow itself is not in a suf­
ficiently good accordance with the experiment. 

t Gold s t e i n, .Modern Hydrodynamics~, Vol. I and II, Odord,1938.
 
See also K arm a n, Z. angew. Math. und Mech., 1, 244 (1921).
 

• K em pI, ~Reibungswiderstandrotierender Scheiben*, Berlin, 1924, p. 168. 

\. 

Let Us choose cylindrical coordinates r, lfl and z, directing
 
the z axis vertically upwards, and let us investigate only the upper
 
haif space above the disc. Then the Navier-S tokes equa tions
 
for a stationary current of the fluid will have the following form;
 

_ t'T) _v aL'r _ .:.!+v al'r = 'I (aZDr ~ fJp 
r fJr r z az fJ:;1 ,.2 P ar' (1) 

fJv'9 V r v'9 av'9 (alv '9 v'!' )v - -- /) --'I ---_r fJr + r + z (1:; - fJ;2 r2 ,. (2) 

avo a"C. 02V. 1 ap 
Vr 7fr + Vz az = 'I 0:;2 -p aZ ' (3) 

and the continuity equation 

aVr + Dr +~=o. 
ar r Bz (4) 

Here Vr> /)'9 and v; are the components of the velocity, p is
 
the pressure, p and
 'I are the density and the kinematic viscosity
 
of the fluid.
 

The fo llowing condi tions serve as the z
boundary conditions of equation (1).
 

On the surface of the disc (the plane
 
z=o): @~Vr=o, v'l'=Olr, I:z=O. (5) 

At z= co (far away from the disc) 

~ 
vr=O,' v'9=O, V;= -c. (6) 

\ 

The last condition shows that there is 
\ 

far away from the disc a constant current 
of fluid flowing towards the disc (Fig. 1). 
, Let us in trod uce a new non-dimensio- Fig. 1. The lines ot flow ot 

.' • a liquid flowIng past a ro­
nal varlable and let us look for the so- tatiDg disc.
 

lutionof equations (1)-(4), satisfying the ,.
 
boundary conditions (5)-(6) in the form
 

vr = rOlF (C); V'l' = rOlG (q; vz = VyOl H (C), 
p=P(C). (7) 
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.The functions F, G, Hand P of the argument ~ evidently 
satisfy the following equations: 

pt - G~ +HF' = F* , (8) 
2FG+HG' =G*, (9) 
HH' -H"=P', (10) 

2F +H' =0, (11) 

wi th the boundary conditions 
F (0) = 0, G (0) = 1, H (0) = 0, (12)
F(oo)=O, G(oo)=O, 

the value of Hat C= 00 being fini teo 
The most exact and complete solution of this system belongs 

to Cochrane. At large values of the non-dimensional coordinate C 
for F, G and H the following asymptotic expansions take place: 

F -A _cc_-1~+Bi _2c~+A(AI+B~) -3C~+ - e 2CiI e 4C' e ... , 
B (AI + BI)

G = Be-C~ _ e- 3CC +12C' •.. , 

AI BI 
H = _C+2A _cc_ + -2CC+C e 2CI e ... , 

where A, Band C are constants determined by means of numeri­
cal integration. On the other hand, a t small values of C, the fol­
lowing expansions take place: 

F - ~ 1 n 1 b~1 (13)-a",-~" -3" '" - , 

G= 1+b~+}a~l+ , (14) 

H = -aC~ + ~ CI+~ C', (15) 

where a and b are some other constants. 
Choosing all the constants pointed out so that the functions 

F, G, H and their derivatives with respect to ~ should remain conti· 
'DUOUS, we may obtain the following numerical values of constants 6: 

a = 0.510, b = -0.616,. C = 0.886, 
A = 0.934, B = 1.208. (16) 

As the limiting expressions for H show, the velocity component 
normal to the surface of the disc increases rapidly as we move away 
from the disc, and then tends to the constant limit C. 

& Co c h ran c. Proc. Cambro Phil. Soc" 30, 365 (1934). 

• 
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As far as the functions F and G are concerned, G diminishes 
rapidly down to zero as we move away from the disc, while F has 
its maximum close to the disc, after which it also diminishes down 
to zero. Therefore, an exact solution of the problem gives the\

/

following picture of the motion of the liquid. Away from the 
rotating infinite disc the fluid moves vertically in the direction 
of tIle electrode; in a thin: layer directly adjacent to the surface 
of the 'disc, the fluid is dragged and acquireR a rotating motion, 
with ,the angular velocity increasing when approaching the disc up 
to the value of w. Finally, because of the centrifugal effect in the 
region where it is dragged, the fluid acquires also a radial velocity 
The lines of tl1e flow of the fluid ,ioin in the infinity. 

The thickness of the region of dragging is not large. As may be 
seen from the graph, already at C",2.7-2.8, G becomes very small, 
diminishing tenfold as compared with its value on the disc itselfal. 
C=O. 

If this point be determined conventionally as a boundary of t.he 
region of dragging, then its thickness a will be equal

I·
 o",2.7·/~.V (I) (17) 

At w = 25, in \\'a tel' at room temperature 

a",2.7~51 ",0.05 cm. 

Let us turn now to the solution of the problem of the transfCl' 
of ions in the electrolyte to the revolving electrode. For the cases 
enumerated in the preceding section, t,he problem of the motion 
of ions spli ts i.nto two problems; in to a purely diffusion par I., 
consisting of the solution of equation (10) of section 2, and into 
the problem of finding the distribution of the electric field in 
the solution. 

Our final problem is to find the relation between the electro" 
mot ive force in the circuit and the electric curren t flowing 

'.' through the solution (the volt-ampere characteristic of the 
process). 

The equa Lion of the convective diffusion wri tten in cylindrical 
coordina tes has the form 

dC 1 ac ac (aae (PC 1 ate)v - -I; - v -=D - - __ 
r Qr + I' '!' art + Z iJz art +d:,t + ,.3 a~t . (18) 
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Inasmuch as in our' case, due Lo axial symmeLry of the pro­
blem, c cannot depend on the angle ep explicitly, the equation 
is simplified and acquires t.he form: 

{)e 1/- ae (ate ate) (19) OJrF(z) a;. + V VOl H (z) az = D art +azl , 

where for v and V z their values from equation (15) are inserted.r 
The equation of the field, according to equation (10) of sec­

tion 2 may be written down in cylindrical coordinates in the form: 

(D	 _ D ) 'e'ac + (nlDl - n,D,) e
l 

Cat? = _ i£.... (20) 
1 I .. ,a,. kT ar nln~ , 

t 

(D	 -D) e ~+ (nlD1-nIDI) e Ca, = ~ (21) 
I I az kT az nln" 

where II' and Iz are the radial and the vertical components of the 
current. 

For the sake of simplicity we shall consider only the upper plane 
of the disc and the half space above it filled by the fluid. The s,itu­
alion at the lower plane of tbe disc shall be identically the same 
a nd shall correspond simply to the doubling of the disc area. 
The current Iz to the electrode in the upper half plane flows 
against the positive direction of the axis z and is considered by us 
as negative. Therefore, there is a plus sign in the right-hand side 
of equation (21). The current, II' flows along the positive direction 
of the r axis and is therefore positive. 

The following conditions serve as the boundary conditions: 
the potential ep of the second electrode (anode) situated away from 
the revolving electrode, at z =/, is chosen as zero: 

epz_l=O.	 (22) 

The concentration of the solution is designated here through c(l). 

Evidently 
C(I) = 41) _ e~/) 

n ­ -n:'1 

where c~1) and c~1) is the concentration of both kinds of ions in the 
bulk of the solution: 

7.. =l, c = c(l).	 (23) 

Close Lo the surface of the electrode, near' the plane z=O, the total 
current transferred to the electrode by those ions which are not 
'iberated at. Lhis electrode must vanish. \iVe shall admit that 
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the. ions of the first kind are liberated at the elecLrode, so tha t 
for the ions of the second kind we may wri te 

D	 aC2 + 1I,eD, C ~ = 0 
I	 az kT' 8z at z = O. (24) 

This relationship, generally speaking, does not take place within 
the solution itself close to the electrode, since even if the ions 
of the second kind are not liberated at the electrode, still they may 
carry a current differing from zero due to convection. On the' elec­
trode i tseH, the convection veloci ty vanishes and the equality (24) 
must hold. 

MUltiplying (24) by _1 , we find, evidently, the boundary con­. n 
1 

dilion for c: 

Jc + noe al.!J 
JZ kTca~=O at z=O.	 (24') 

We shall attempt to look for the solution of equations (19), 
(20), (21) satisfying the boundary conditions (22), (23), (24') in Lhe 
form 

c=c(z) alld ep=ep(z), (25) 

i. e. depending only on the z coordinate. If such a SOlution were 
found and would turn out not to be contradictory, on the basis 
of the uniqueness theorem, it might be considered as 'the correct 

•	 solution of our problem. Physically, supposition (25) means no­
thing else but that the radial motion of the fluid cannot carry 
the ions beyond the electrode, and consequently may, with a fair 

. degree	 of exactness, be fulfilled only for large ,dimensions of the 
disc, when the influence of the edges may be neglected and the 
disc may be considered infinitely large. 

If the supposition (25) is fulfilled, then the equations (19)­
(21) will.evidently acquire the following form: 

de die 
/;z d--... = D d-.. I , (26) 

(D -D) ~+ (n 1D.-n2 DJ"a . d" _~. _ ' 
• 2 e dz 10:1' c dz - Tl11t. - J, (26') 

ir=O. (26") 
<1* 



B. Lcvich2'12 

Integrating (26) we find, successively 
1 

(Ie J 15 d, 
(27)(f, = a,eO 

z 1 1 r 15 f1,:d: 

c=a l 1e dz+a z' (28)0 
oJ 
() 

where a , and a are the constants of integration.z 
The boundary condi Lion (22) gives 

I j :

' v Jf,cI: . 

c(l)=a e 0 dz+ae ,1 , \ 
() 

sO that it is convenient to write the expression for c in the form 
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and 

kT (D , - D z) 10' ~+cP= e (nJD J - n 2D z) "Cll) 

z 

+ kTj . f ". dz
Z (30') 

e (nJDJ - nzDz) j . JZ ~ (' V.dl 

l __n--=.::.,..J=- D. d (I)- e 0 z+e
(nZ-n.)D,e 

I 

The potential difference between the anode and the cathode 
CPa --CP/l' where CPa is the potential of the anode, and cph-the poten­
tial of the cathode, is evidently equal to the applied potential 
difference V minus the concentration polarization P. The latter 
is equal to 

p = _ kT 19 e;O) = _ kT 19 ~ , 
Z j Z (32 )l' enJ (l) en. e(/)r 15 J ":dz CJ 

C= at.l e ° dz +c(l), (29) 
Since we have chosen. the zero of poLenLial On the anode (z = I), 

I we get evidently 

I 
f 

Equation (26') may be written as: 
__ kT (D.-D2 ) 19~ + 

ikT dz (D. - D.,) kT de CPk - e (niDi - nzDzl e(l)
d9=z - - . 

e (/llD L - /lzD 2) c e (n,D , - nzDz) C
 

I' o
 

Integrating within the limits from I to z, we find the following 

expression for the potent.ial 9: 

_ kT (D. - Dz) 1 e kTj Cdz 30 
cP - - e (n,D. - nzD ) g c(/) + e2 (n.D i - n2D z) ~ C + a~ . ()z

I 

The constant a may be found from the boundary condition (24').
i 

Substituting into (24') t.he value of ~l~ , c and d~ for Z = 0, we get,
( ~ .J 

after simple transformations: 

nz J (31)a - '--,
1 - n~-ni DIe 

whence, substituting into (29) and (30), we get: 

% t ' 
nz j S15 Svzd'l 

n2- nJ 
c DIe e ° dz +C(Il, (29') 

I 

. d=.' 1 

kTJ ~ Z I "dzJ z z+ 2 (n D - D ~ '1" 15 f·Il ) dz + e(l)e • nzJ e °
 
l (nz _ nil D,e •
 

I 

Therefore 

- kT(D,--;Dz) 1 ~-
V = (CPa - CPIl) +P = - CPh +P - + e (n,D. - neD ) g e<l)z

o 

(33 )
l lc Tj ~ --~zd~~I:'"-;(z-V-:-dl·-.--'I)

- -kT Ig ~(I) - e.2 (n D , - n 2D 2 ) • n J• SeD (, dz + e 
en e I -n2 )Dl" 

(ne 1 1 
~ 

Let us now turn to the calcula tion of the las L in Legc·al. Substi ­
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tuting the values V z from equations (15) and (27), we get 
o 

1=) dz 
z. I z r 

d 
n' f I5Jv. ' 

I 21 e' II z + e(l)
(nS-nl ) Dle 

'/ 

(	 , dz 

(34)- J _[00> ],I 

, n21'rz e - (v~)a+ ,., dz + c(/) 

(n2 - nil Die 
i 

Le t us introduce into the integral (34) a new variable t, deter­
mined as 

(35)t = 0' 
~ 

, 

where 

8'= V~ =(D)'/3 ~_=1.82(Q)'130. (35') 
( ~ ~)!/S '/ V~ 'I 

3	 D 3 

Here 0= ~ / is a quantity which, except for the coefficient,'IV (l) 

is equal to the thickness of the boundary layer of fluid, determined 
by formula (17). Thus, for the distance between the electrodes 
always I» 0'. Then we get 

o 

1= f	 +dt 
n l ; ft _[13+~1~+ .. ,J ell) 

IW( -)D e dt+;;­n2 n. ,Le	 v 

I/O'
 

o
 

+ r r· dt	 =1, +1 (36)

J s' _(IS+~14+	 
2 

n J'	 ... ) e(l)
t 2 e dt +_ 

(n2- n!) Dle & 

I/O' 

Here ~ stands for a certain numerical coefficient. 
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In the integral I, the variable t is greater than unity. Because 
of the rapid convergence of the exponential expressions, 
the first integral in the denominator is extremely small as com­
pared with the second member and may be omitted. Therefore 

I 
'"'J __ ,-v (l- ~') '"'J Idt 

I, = c(l) = c(l) = - -;;<iT , (37)~ 
'10' ""1' 

inasmuch as I ;) 0'. 
The second integral 12 is calculated in the appendix. The 

result is 
(0) 

n, ) DI	 = (n 2 - I 1 _c_ 
2_: gC(I) ,	 (38) 

and consequently, due to equations (38), (37) and (36), 

I = I + I = _ I + (n2 - nl) D,e 1 c(O)
1 ., -	 a (39)

- c(!) n 21 I:> ~ 

Inserting this value ~ of 1 into equation (36), we get: 

kT(D -D) (0) "T (0) "T ")Dn, (0)v l 2 Ig---C "I e " (ne - I Ig-C +g---­
e (n,D l - n2D2) c( I) en! c(t) e n2 (n,D! - neDJ c(t) 

+	 kTI (l - 13') _ kT (_1__1 ) 19 c(O) + kTI (l - 13') (40) 
e2(n l'D , - n1D 2) e(l) - e n2 n, c(l) e2(nlD, - n2D~) c(l)' 

The second· member of equation (40) has a simple physical 
meaning; it is nothing else but the usual ohmic potential drop in 
a solution, while the first member represents the potential drop con­

nected wi th concen tr~ tion polarization and the ohmic drop in the so­
lution of variable concentration. From the form of the second mem­
ber containing the usual ohmic drop in a solution with a constant 
concentration c(t) over the length (l-o'), we see that a nOliceable 
change of concentra tion takes place only over the region of the 
solution between the electrode itself (z=O) and the plane z,,",o'. 

Thus, we come to the following fundamental result: all t,he 
solution may be split into two regions. In the first region, in 
the interval between z ""' a' and z ""' I, the concentration of the 
solu tion remains constant and equal to 6/). In the second region, 
between the electrode and z = 0', the concentra tion varies from. 
the value of Co on the electrode to the value of c(/) in the solution. 
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It is necessary to emphasize here that such a picture of the 
distribution of concentration in the solution is by no means ob­
vious and we did not postulate it as was done in Nernst's theory, 
but came to it as a result of precise analysis. At not very low 
concentrations of the solution and at usual distances between 
the electrodes l, the ohmic resist.ance of the solution is e~tre­

mely small and the second member in formula (40) may be omit­
ted. Then we get, from equation (40): 

kT ( 1 1 ) I CoV=- --- g(Tj'e n 2 III C 

or, substituting the value of c(O) from equation (29') we get: 

o 
V = kT (-! _2..) 19 (1 + 11 210' (' e-(l3Hl4+ ... )dt). 

e 112 n l (n" -- n )D ec(l} J 
- L 1 110' 

Since the distance between the elect.rodes l is great as compared 
with 0', we may approximately substitute infinity for the lower 
limit of the integral. Then we get: 

o =
 
~ e-(l3+1lt4+ .. ')rlt CY- - ~ e- Pdt = - r (~ ) = -1' ( ~) = - 0.89,
 
= 0
 

where r is the gamma function. 
Here we have taken the advantage of the fact that at great 

values of t, when the higher powers in the polynome in the 
exponent prevail, the integrated expression vanishes, therefore the 
integral converges very rapidly. Thus, finally 

, v_kT(~_~)la(1_ n~.O.89~' )._ 
- e 112 III I:> (n - n ) Dlc(l) e ­

2 1

kT ( 1 1 ) I ( j ) .=- --- g 1--., (41)
e n2 nl Jllm 

whel'e ilim denotes the quantity: 

'. _ (n2 - nl) Dlc(l) e '1.2) 
/lllTI - O.B9 . n2a' V* 

Formula (41) shows that to the revolving electrode there may 
flow a current, the intensity of which does not exceed the value 
of iJim, called, therefore, the limiting current, or the current of 
saturation. In the case of passage of a current exceeding the 
imiting current, there would arise a deviation of t.he solution from 
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electroneutrality, accompanied by the appearance of a very high 
stopping resistance, as a resulL of which the density of the current 
would be diminished down to the values of Ium. Rewriting for­
mula (41) in the form 

eV 

. ( lIT (..!.. _ 1))
I =/lim 1-e n2 f1i , (43) 

we s!!e (inasmuch as n2 <0) tha tat an electromotive force significan t 

to any extent and exceeding kT, there passes through the solution 
e 

, a limiting current, whic'h is independent of the electric field 
strength. 

Since the limiting current does not depend on the field strength, 
there is no need, in order to fi nd its va lue alo ne, to perform all 
the preceding calculations. In fact, since the limiting current is 

- .~ a pure diffusion process, we can, in order to find it, make use of 
the following argumenLs. 

Equation (43) Connects the current. I flowing in the solution 
with the difference of concentrations at the electrodes and the para­
meters characterizing the motion of the fluid and of the ions. 
It is clear that the highest possible value of the current flim 

would correspond to the highest value of the difference of concen­
trations, i. e. to the value of c(O) equal to zero. 

Thus, equation (29 /) gives directly 

. e(l) (n 2 - n 1) D 1e e(l) (n
2 

- n ) D 
1
e 1lllm = = 1 . 

1 Z n2 • 1/0" 
I -f"·O.dZ(' D .• 0' ~ e-(/3+lI t4 + .. ')dt 

n 2 J e 0 d; o 
o 

e( I} (n - )D,e2 n 1 (42')0.89· nl;' 

The, full curren t flowing through the solution is proportiona I 
to the area of the electrode and equals 

1= 27tr2flim, 

where factor 2 is introduced in order Lo take boLh sides of t-lJ,e 
disc into account. 
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l.t follows from formula (42') that the value of the .limiting 
current ilim turns out to correspond to such a picture of the 
distri bution of ions, in which there would take place a linear 
drop of concentration from the value corresponding to the average 
concentration in the bulk of the solution down to zero close t,o 
the revolving electrode, this drop occurring within the layer of 
the thickness of 

0"=0.890'=0.89 X 1.82(~Y/8V~=1.62(~)I/SV;. (44) 

The existence of th(' quantity 8", called the thickness of the 
diffusion layer, was postulated by Nernst7 

• 

'Ve see that the exact theory
C I.D 

[77J is in accord with Nernst's quali­
'I, 

1..a tive theory and leads to a qui to 
defini te dependence between the 

0?5 thickness of the diffusion layer, 
on the one hand, and the proper­
ties of ions of the fluid and lhe 
character of it.s motion, on the 
other hand. At the same time, 
the essential difference between 
the present theory and NernsVs 
theory lies in the fact that in 
the former, no incorrect assum­

, ptions are made concerning the L ~-;- ~,~-:~~o~ 10 _ rj immobility of the fluid within 
\ l' the diffusion· ·laye~. It only

Fig. 2. The depedence of thc concentration 
0£ solution on the distance rt'orn the diSC. turns out that also in the case 

of a fluid moving with respect 
to the electrode, there is a region of a v('ry abrupt, almost linear 
drop of concentration. 

It is necessary to emphasize that with an exactness up to a 
coefficient of the order of unity, between the thickness of th0 
diffusion layer 0" and the thickness of the boundary layer of 
fluid. 0, dragged by the rotating disc, there exists the relation 

o"~ (€)1/8 O. (45) 

7 E u c ken, Z. physik. Chcm., 69, n (1907); B aar s, I-landb. d. Phys., 
13, 559 (1928). 

o( 
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As will be shown in the following section, this relation has 
8 general character. 

For the particular case of a univalent electrolyte and cathode 
deposition (n1 = 1, nz = - t) we have the follOWing expression for 
the volt-ampere characteristic of the discharge: 

.. eE 
! = !lim (1-e - ikT) 

where 
ND I NDleflim• 0.89 " (46)
-0 0.81 (~) 1.'3I vi

2 

If, ins lead of the angular velocity 00, we shOUld introduce the 
number of revolutions Z = ')w , then 

_1t 

ND,e 

fum = (D)I/3 ./ ~ 
2.2 ~ V z 

With respect to the order of magnitude D'"'-'iO- 5,v=1O-:land 

0" "'" 0.022 ( '±5 /)
= yz' 

A more detailed comparison wiLh experimenlal data on hand 
shall be gi ven in the following section. 

4. The generl'l theory of the boundary layer 

A 1 ami n arb 0 u n dar y I aye r. In the preceding 
. section devoted to the theory of a rotating electrode we have develop­
.ed an exact theory of the limiting current passing through the. solution. 
It turned out there that although, strictiy speaking, the decreas'e 
of concentration takes place throughout the solution, there exists 
a relatively thin layer of fluid in which a very rapid drop of concen­
tration takes place. Further, beyond the li,nits of this layer, concen­
trat.ion may be 'considered as almost constant. This cireumstanee i8 
elosely bound with the character of the flow of the fluid dragged by a 
rotating electrode. Indeed, the Karman theory given at the begin­
ning of the uhapter ~hows that the fluid is dragged by the disc only 
within a very thin layer, beyond the limits of which there is bu.t 
a steady flow of the fluid towards the electrode. 
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It was found there [equation (45)] t.hat between the thickness of 
the diffusion boun dary layer and the thickness of the boundary layer 
of fluid there exists a simple connection. 

This circumstance is not a peculiar characteristic of the rotating 
electrode, but apparently is of an universal. character. It turns out 
that in case of any geometrical conditions of flow of fluid with 
sufficiently high Reynolds numbers, there is close to the surface 
of the electrode a thin diffusion layer within which the main change 
of concentration takes place. 

For the sake of convenience we shall consider the electrode at rest 
and the solution as fh./wing past the electrode with a given velocity 
which equals at a great distance from the electrode U O' 

The flow of the fluid is described by Navier-Stokes equation 
which for a stationary flow of the fluid have the form 

(v grad) v = -grad I; + vA v, (1) 

div v = 0, (2) 

where v is the vector of velocity of the fluid, p - the pressure, 
p-the density and v-the kinematic viscosity of the fluid. As is 
known, the character of flow of the fluid is determined by the value 
of the only non-dimensional parameter that may be obtained by means 
of the basic quantities entering the Navier-Stokes equations, i. e. 

of the Reynolds number Re = ~l, where v is a characte~istic velocity 

of the flow, and l is a characteristic length (in our case, the dimensions 
of the body past which the fluid flows). The Reynolds number, as far 
as the order of magnitude is concerned, represents the ratio of the con­
vective term (v grad) v in the left-hand side of equation (1) to the 
viscous term v~v In the right-hand side of equation (1). Indeed 

l. 
v· TV VlRe'" !(v grad) vi '" '" - .I ',~vl " 'I 

U{2 

1£ the Reynolds number is large (but not large enough to set in the 
turbulent flow), then the viscous term is small as compare d with 
the convective member and may be omitted. Here the Navier-Stokes 
equations reduce to the equations of motion of a perfect fluid, whence 
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it may be seen that the influence of viscosity does not tell at all on the 
flow of the fluid in volume. Thus, next to the surface of a solid body, 
there moves with great velocity a flow of a quasi-pet'fect fluid, tha t 
may slip along its surfaee without any loss of velocity caused by fric­
tion. On the other hand, however, the expedment shows that on the 
surface of a solid body there is no slip between the solid body and 
the fluid, so that the velocity of the latter drops to zero on the boun­
dary with the solid body. Therefore, in the immediate vicinity of the 
surface of the solid body, the velocity of the fluid must change from 
the comparatively high value of the velocity of the stream flowing 
.past the surface down to zero at the solid wall. In this region called, 
as is known, Prandtl's boundary layer, because of the very high gra­
dient of velocity in the direr,tion normal to the wall, it is no longel' 
possible to neglect the influence of viscosity, and the term v~.v turns 
out here to be of the same order of magnitude as the convective term. 
Thus, the entire stream of the fluid with lurge Reynolds numbers may 
be divided into two regions: the region of potential flow, in which 
viscosity does not play any essential part, and the region of 
Prandtl's boundary layer, where, on the contrary, the influence of 
viscosity is very essential and the viscous terms in Navier-Stokes equa­
tion may not be dropped. However, due to the circ.umstance that the 
thickness of the boundary layer ais very small, the Navier-Stokes 
equations here may be considerably simplified 4. It is clear, indeed, 
that the variation of velocity along the wall within the boundar), 
layer is very small as compared with its variation along the normal. 

If the X axis is directed along the surface of the body, which fol' 
the sake of simplicity we shall consider as having a very large radius 
of curvature, and the Y axis is directed normal to the wall, then 
the equa tions of motion of the fluid in the boundary layer (Prandtl' 8 

equations) would have the form: 

uau+vaU=va2U _!..-ap ~=o,ax 8y ay2" p ax ' ay 

where U and V denote the tangential and the 
of velocity. 

On the surface of the body U = V = 0, while far away from iL, 
on the limits of the boundary layer, U Lurns into the given velo­• 
city of the outer stream flowing past the body, U O ' The thickness 
of the boundary layer 0 is determined as such a distance from the 

av +av =0 ax By , 

normal componenls 
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'wall, in which the tangential component of velocity U bec.omes 
with a sufficient degree of accuracy equal to V ' A simpleo 
analysis shows that always by the order of magnitude the thick­
ness of the boundary layer is equal to 

.. /vx
a""" JI uo (3) 

where x denotes the distance from a front stagnation point. 
The second Prandtl's equation shows that the pressure in 

a boundary layer does not change in the direction normal to the 

wall. Therefore, the term ~ in the first equation represents the 

gradient of pressure along the wall in an exterior potential 
stream. 

In a particular case, when in the exterior stream there is no 

gradient of pressure ~~, and Prandtl's equations ar'e still more ­

simplified s acquiring the form: 

au au azuU--+V--v­ax ay - ayZ' (4) 
QP =0 
ay , (5) 

au+av =0 ax ay • (6) 

Solutions of Prandtl's equation (4)-(6) for the component of 
Ille velociLy with small (as compared with 8) values of y, may be 
l'epresented in the form 

V o + .V"""TY "'s 
vyz 

(7)V """aa+'" 
Let us turn now to the equaLions of convective diffusion of 

ions in the solution. According to preceding statements, they 
shaD have the form 

2U ac +V ~ = D (a~c +Dc) (8)
DJ: ay a.'tZ ayZ , 

D being the effective coefficient of diffusion. The form 'of equa tion (8) 
is very similar to the form of Navier-Stokes equatiol~s, when in the 
laLLer the gradient of pressure is absent. Here, coefficient of diffu­
sion D plays the role of lhe kinematic viscosity v: Therefore, lhe 
<;haf'acter of convective diffusion shall be determined by the value 
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of the only non-dimensional quantity entering equation (8) r:;, 
analogous to the Reynolds number. The quantity ~ is called the 

Pekle number and has a simple meaning - it represents, in the 
order of magnitude, the ratio of the convective term in equation 
(8) to the diffusion term: 

Jc 
U iJx UI

Pe"""--",,,,---­iJZc D 
D iJ y2 

In the case of great values of the Pekle number, we may apply to 
the equation of convective diffusion considerations wholly similar to 
those brought forward above, concerning the boundary layer in the 
ease of an obstacle with a large Reynolds number Re. In fact, when 
Pe ~ 1 at great distances from the surface of the obstacle, the 
diffusion term in equation (8) may be neglected, so that in this 
region the value of concentration shall be determined exclusively 
by the convection of the fluid. In particulal', iu the case of the 
usual stirring of the solution, the concentration at a distance hom 
the ele~trode shall be constant .. 

On the other hand, on the surface of the electrode, concentl'ation 
(' is also constant, but it is diffel'!int from the volume concentration 
(in particular, for the case of the limiting current c = 0 on the elec­
trode). Therefore, the main change of concentration must take place 
within a thin layer of the solution, adjacent to the surfa.ce of the 
electrode. In this thin layer of fluid the diffusion term in equation (8), 
due to large values of concentration gradient occurring here, turns out 
to be of the same order of magnitude as the convective term. Thus, 
we see that in the case of high Pekle number Pe, there must exist 
a region of abrupt change of concentration of the solution-a region 
~imilar to that of the abrupt change of the velocity of the fluid­
the Prandtl boundary layer. We shall call it following Nernst the 
J'egion of the boundary diffusion layer. 

These considerations I'efer equally to the diffusion of neulral 
particles and to the diffusion of ions in those cases, enumerated in 
section 2, when the electric field may be separated from the 
ge neral equations of transfer. 

Our problem at present is to obtain the equations of convective 
diffusion in a bounclal'y diffusion layer and to determine the thickness 
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of the latter a'. The solutioll of the first pI'oblem does not offer any 
difficulties; it is clear that in a diffusion layer the change of concen­
tration along the direction perpendicular to the wall shall be great 
in comparison with the change of concentration along the wall, 
so that 

a21; (' a2C I; [Pc a·c
-"""-'-- -",,-'a,x. :r;2 , uy2 a'. , ay2 ~ ax•. 

Therefore, the equation of convective diffusion in the boundary 
diffusion layer has the form 

U ac + V oc = D aac . 
ax ay uy· (9) 

In finding the thickness of the diffusion layer, it is necessary 
t.o distinguish between two cases, differeut in principle; the case 

when the non-dimensional ratio ~ , called the Prandtl's diffusion' 

numbel' PI': is great as compared with unity, and the case when, on 
the contrary, it is a number of the order of unity. 

Strictly speaking, the latter case is ne\Ter realized in practice 
in the phenomenon of diffusion. However, it is widely known in 
phenomena of heat conduction, where the coefficient of heat conduc­
tion i~ usually of the same order of magnit.ude as the viscosity of the 
fluid. 

Besides, as shall be seen below, in order that there should he 

between the two cases a difference essential in pl'actice, it is neces­
sary that not only the Prandtl number itself, but (PI') 1/3 also were 
large as compared with unlty, i. e. that PI' were at least of the order 
of a thousand. 

We shall consider here only the case of very large Prandtl numbers 
in which we are directly interested, and which is always realized 
in electrochemistry. 

Inasmuch as the thickness of the boundary layer a"" V~ and for 
the process of diffusion t.he rOle of kinematic viscosity is played by the 
coefficient of diffusion D, it is clear that the thickness of the boundary 
diffusion layer 8' is smaller than a, since D4;:v. This may also be seen 
directly from equation (8). 

This circumstance allows us, in investigating the diffusion layer, 
to take advantage of the expansion for the components of velocity (7), 
in which only the first term is retained, since in the diffusion 
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layer certainly y4;:r.. In equation (9) the member V _a~ must. be of 
cJy 

a"c
the same order of magnitude as the member D as' 

y . 
On the other hand, according to the order of magnitude, 

with y""a' we have: 

ac (ac) "CO'1'c
V a- "" V l/=S' a- . "" .:-;' "" ~ ,y y Y=~' 0 u 

while 

D (a2 
c ) "" ~cay' l/=o' 6'2 • 

From both the expressions obtained, we get 

~, (D \)1/3~ 0 o "" - !J "" -- (to)
" (Pr)1/3 . 

We can see fl'om the relationship (10) that the thickness of the 
diffusion boundary layer is connected with the thickness of Prandtl's 
boundary layer by an universal relations, independent of the Rey­
nolds number. 

Due to the smallness of the coefficient of diffusion, r.' is always 
small as compared with a, the use of formula (10) being justi­
fied, inasmuch as (Pr)'/3 ~ 1. 

It is easy to see here that the first term in the left-hand side of 
equation (9) is of the same order of magni tude as the second one, i. e. 

U ac "" V ~c • 
ax . dy 

Indeed 

u ~ '" UoY ~_ "" Uo~~~ "" !J!. "" D a'c '"'" F ~ 
ax 0 x uo0

3 0" ay" iJy 

on the basis of equations (3) and (7). 
Compadson of equation (9) with equation (4) in Eucken's WOrk 3 

shows tha t he made an error neglecting a term of the same order 
of magni tude as that one retained in the equa tion. 

The case of PI,andtl's numbers PI' of the order of unity, consi­
dered in the theory of hea t conductioa, leads to a different reb.tion 
between G' and 8.' Indeed in this calle 4 

.j -.... - " •0' "" V v lJ "" Prl/1 

where x is the coefficient of heat conduction. 
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Equations (10) aod (3) show by th.e way that the thickness of the 
diffusion layer in the case of a solution flowing past the electrode 
depends, generally speaking, 'on the coordinate x on the electrode Sur­
face. Namely, 8 increases as the square root of the distance from the 
front stagnation point of the body. Therefore, for instance, the 
thickness of elect.rolytical deposits must vary according to this 
law, as we move away from the end of the electrode - a statement 
that has a considerable technical interest for certain cases of depo­
sits on precise instruments. 

It is clear, of course, that the formulae for thicknesses 0' and 
13 may be made use of only in cases of sufficiently large values of 
x, since in the opposite case the requirement Re ~ 1, or Pe ~ 1, 
correspondingly, shall not be fulfilled. 

Knowledge of the expression for the thickness of the diffusion 
1ayer enables to write down at once the expression. for the order of. 
magnitude of the limiting current that may flow to the electrode. 
It is the limiting current, exactly, that corresponds to the great­
pst drop of concentration between the solution and the electrode, 
:. e. itevid<.>ntly takes place when the concentration of ions 
liberating at the electrode vanishes. Here, as to the order of mag­
nitude, the limiting current density ilim is equal to 

. eel) - cO Dc(!) Prl/3 Dc(l) f',. 1/3 

/Jim =D "\ = J> '" -(-- • (11)
o u vx 

Uo 

The limiting current density depends, generally speaking, on the 
ehosen point on the electrode surface, since the thickness itself of 
the diffusion layer changes from point to point. 

The tot,al limiting:current flowing down the electrode is 

J Um = ~ jlim dS 

where the integration is performed over,the surface of the electrode. 
If we should consider that the) curvature of the latter is sufficient­
ly small, i. e. consider that it has the shape of a plate l in length 
and h in width, then evidently 

)ll 3 /ffl
J lim '" Dec(l) ( D

V •JI ---:;- h. (12) 

Exact calculations of the limiting current may be performed only 
in simple geometrical cases. Particularly, in the case Of the elec­

.... 

-.;\] 

trode in the form of a plate of dimensions sufficiently great as 
to allow to ignore the influence of the ends, an exact solution 
leads to the expression for the total limiting current intensity': 

. _ O.67ec(!)hD2/3UI/211/2
JI,m-' 1lG 0 (12') 

v

coinciding wi th equation (12) in the order of magnitude. 
In other cases, for instance in the case of a rotating cylinder or 

disc, or in a case when the solution flows past such electrodes, or 
'is drawn past them by means of a stirring apparatus, the formula 
(12) may be made use of as far as the order of magnitude is con­
cerned. This circumstance is connected with the fact that, as calcu­
lations show, the thickness of the boundary layer 0 is always, by 
the order of magnitude, connected wi th the ra te of flow by the 
"elation (3), although, of course, the numerical coefficient shall be 
different in different geometrical cases. 

5. The theory of the diffusion boundary layer in the case 
of a turbulent flow 

I n the preceding section we have exposed the theory of the dif­
fusion boundary layer for the case of a laminar flow of a fluid past 
the electrode. We have not considered there the question as to wheth­
er the flow of the fluid outside the boundary layer was laminar 
or turbulent, inasmuch as only the processes taking place within the 
boundary layer playa significant role for the passage of the current. 

However, at very large Reynolds numbers (Re '" tOG for a quiet 
flow of the fluid and at smaller numbers for a perturbed one), 
turbulence of the stream of fluid take!3 place not only in the volume, 
but inside the boundary layer as well. Here the picture of the current 
passing through the solution is modified essentially, and the former 
conclusions lose their force. 'Ve shall consider further on the question 
of the passage of the current in the presence of a turbulent boundary 

~. layer 8, 

8 This section is intentionally written briefly, since the hydrodynamic
•	 scope of the question is of less interest for physical chemists. For acquaintance 

with the theory of turbulence we shall refer the reader to a monography by 
Goldstein in oModern Hydrodynamics~. Vol. I and 11, Oxfurd. 1938. 

1,. 

~ 
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Let us write out, first of all, equations of motion of the fluid 
in a turbulent boundary layer. If we suppose, for the sake of sim­
plicity, that the flow takes place along a wall of small curvature 
in the direction of x axis, and if we shall represent the tangential 
and the normal component of velocity as 

u=u+u', /;=/;+/;', 

where u and v81'C average with respect to time values, and u', v' are 
turbulent pulsations, then the corresponding equations are 

- oi;, - aD a ( au --)
ll-+V~=~ v--u'e' : ('I)

ax dy dy ay 

The term v o,l.l represents the flow of the momentum in the direction
dy . 

perpeudicular to the wall due to viscosity, and the term u'v' repre­ ~. 

sents the flow of the momentum due to turbulent pubations (divided 
by the den:sity of the fluid). At not too small distances from the 
wall, the latter turns out to be many times greater than the first, 
so that we may ileglect the influence of viscosity, Only at very small 

distance.> ~ from the wall, due to the great value of the gradient ~;; > 

both of the terms become equal to each other, after which the tel'ffi 

v ~ begins to prevail over the term a' v'. In other words, at values of 

y<8 the transfer of the momentum in the fluid is conditioned in the 

main by viscosity. 

As ig known, this region bears the name of the viscous sublayer~ 

We wish to einphasize that, in spite of the general opinion, the tur­
bulent pulsations of velocities inside the viscous sublayer do not 
disappear by any means, and the motion does not become laminar. 
On the con trary, they are of the same order of magnitude as the ave­
rage velocities. It is only the flow of the momentum transferred by the 
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respect to the time. The effective concentration c may be represent­
ed in the form 

C=c+c', 

wher'e cis the average (with respect to time) concentration, and c' 
is its pulsation part. 

In.serting t.his value of c and also the eXiJressions for it and v given 
above into equation (8) of section 4, and then averaging with res­
pect to time, we may write the equation of transfer in the form 

- of: - de a (. i'ic ---) (2)ud--+v;;-=;,:- D-a-c'c' . 
•1: VY vY !J 

We may affirm, first of all, that inasmuch as in the case of a tur­
bulent regime of the flow the migration of ions is separated and the 
passage of the current through the sol ution is described by an 
equation of a purely diffusion type, there remains valid the former 
conciusion as to the e~~istence of a limiting current that may flow 
through the solution and corresponds to the boundary condition c = 0 
on the surface of the electrode. 

Due to very energetic stirring of the solution when there is a 
turbulent flow, the values themselves of the limiting currents are, 
generally speaking, considerably greater than in the case of a 
laminar flow. 

Considering the equations of the transfer we see further that, away 
from a solid wall, the flow of the substance transferred by turbulent 
pulsations of the velocity v' c' would be much gr·eater than the flow 

of a substance transferred by molecular' diffusion D~ , so that 

here the latter may be neglected altogether. At vel'y small distances 
from the wall, when y < e', the transfer of the substance would, on the 
opposite, be realized in the main by molecular diffusion, inasmuch 
. a-c 
as here the gr'adient ,,- would be very !lreat.• vy • ~
 

We shall name this region the diffusion sublayer,
 turbulent pulsa tions tha t is small. ~')1 
We see further that away from the wall, when in equations (1)Let us turn now to equations of transfer in a turbulent boundary
 

layer,
 and (2) we may neglect the viscous and the diffusion terms respecti. 
vely, the equations of motion and of transfer become similar.The equations of transfer will have the former form (8) of 

~ Therefore, t.here is here a full a.nalogy between the transfer 0' thesection 4, however, all of the quantities shall now cha nge statistically 
momentum and the tl'ansfer of the matter in a flowing fluid. in time ..Therefore, in all the final expressions we must average with 

II II 
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This analogy would remain in force in the case of small values 
" of y as well, if the quantities ~ and D would have close numerical 

values, i. ~. the Prandtl number would be of the order of unity (which 
is the case usually in heat conduction). Inasmuch, however, as the 
coefficient of diffusion is always much less than the viscosity, it is 

1,1 clear that the thickness of the diffusion sublayer Of is less than the 
thickness of the viscous sublayer a. Jndeed, in the case of transfer 
of matter the diffusion and the turbulent. flows become equal to 

II each other at relat.ively high values of the gradient -;S-, i. e. clo­

Ber to the wall than takes place usually for similar quantities in 
the Course of transfer of momentum. . 

Therefore, the ent.ire turbulent boundary layer may be divjded 
ioto three regions: 

1) the region of the nucleus of the turbulent. boundary layer
y> 8, in which both the transfer of the momentum and the tr'ans­
fer of matter are realized by turbulent pulsations; 

2) the region af 

~ y .s;; 8, in which the transfer of the momentum 
is realized by means of a viscous mechanism, while the matter 
is t.ransferred by turbulent pulsations, and finally 

3) the region y ~ Of, in which the transfer of the momentum is as 
formerly realized by a viscous mecharlism, and the matter is trans­
ferred by moleculal' diffusion (diffugion sublayer). 

The viscous sublayer includes, evidently, both the latter 
regions. The exact relationship between 0' and 8 shall be given 
below. 

From all that has been said above it is clear that between the 
phenomena we are interested in of the transfer of matter aud the 
transfer of momentum in a tUl'bulent flow of fluid, revealing itself 
in the form of the friction stresses acting from the fluid on the solid 
walL there is a close connection and even a certain analogy, although 
not a full one. 

This circumstance, as well ail dimensionality (~onsiderationsmay 
be made use of in ol'der to write the general expression for the {low 
of matter thus found across a turbulent boundary layer. The density 
of the limiting current shall be eVidently' equal'to q is obtai, 
ned from the condition c = 0 on the surface of the body and c =7' c(l) 

beyond the limits of the boundary layer. 

.... 
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As is shown in hydrodynamics, the shear stresses acting per cm. 2
 

u( the solid wall may be always represented in the form of
 

PUf 
a= Cf (Re) 2' 

where p i,; the density of the fluid, III is the average velocity of its
 
flow, and 1:, (Re) - a certain function of the Reynolds number,
 
bearing the nam~ of local coefficient of resistan':e.
 

The form of (' f depends, of comse, on the form of the surface flown
 
past and on the distance from the front stagnation point. Analogous
 
relations hold for the total friction forces.
 

As far as the flow of matter q transferred by the turbulent flow
 
of the fluid to the cm. 2 0fthe surface is concerned,itisclearthat
 
it cannot depend explicitly on the viscosity of the fluid ~ and on the
 
coefficient of diffusion D. Therefore, according to dimensionality
 
arguments, it is elear that !J must have the form
 

~ q=f(Re, Pr)u/c/, 

inasmuch as there are no other dimensional values, except UI anll
 
Cil by means of which it is possible to compose the quantity hav­

o iog the dimensionality of q.
 
For the particular case of the smooth plate, we have obtained an
 

exact formula for f (Re, Prj.
 
Inasmuch as into these formulae enter unknown constants cha­


racterizing the turbulent tl'ansfer of matter in a stream, they
 
cannot be made use of for direct finding of q. On the contrary,
 
hO'Never, by measuring q it is possible to find the values of these
 
important constants.
 

For finding the transfer of matter it is necessary to know tbe
 
. law of the distribution of velocities, and concentrations in the dif­

.ferent regions of the stream considered above.
 

As is known, in the region of the turbulent boundary layer,
 
there takes place a logal'ithmic law of distribution for the ave­

rage rate of flow Ul:
 
- , VoY y
 

t
,J· U'l =yv 0 Ig-'1- +u.=yVo Ig6" +u., 

00 

j where U6 is tl>e velocity on the boundary of a viscous sublayer 

:;......, y~ , V is the characteristic velocity of the stream equal to~ o 
o •
 

l/air andy is some constant.
 

.....ill 
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Within the viscous sublayer the momentum is transferred by 
a viscous flow. The. velocities of a viscous flow Uvisc and Vvl are,sc 
as previously, expressed by fOrmulae (7) of section 4, where, how­
ever, ~ denotes hOW the thickness of the viscous sublayer, U is the o 
velocity on its boundary, i. e. Ue, and due to smallness of 0 the 
development may be stopped at. the first term. 

As concerns Ib.e average velocities of the turb.ulent flow within 
a viscous sublayer, as L. Landau has pointed out to the author, 
they may be obtained from the following considerations. 

Since on the wall all the velocities vanish, close to it for the 
average velocities of the turbulent motion it is possible to write 
(with the exactness up to small quantities of a higher order): 

II., =ay, (3) 

- b'J = y-.V z (3') 

In the developmpnt v the terms of the first order are absent, inas­2 

muchas, as is seen from the equation of continuity (see also section 4) 
the order of magnitude of the normal component of the velocity 
exceeds the order of magnitude of the tangential component by an 
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at y <~, so that here 

f''1U ci 
a '" ::lyisc = -a 

The distributlon of velocities being known, we may find the­
transferred flow of matter. 

According to what has been said above, in the first and seco.nd 
regions the flow of rna tter is transferred by a turbulent motion 
of the fluid. As follows from the general theory of transfer in the 
course of turbulent motion, for the flow of matter we may write­
(similarly to the way it is done in the dynamic theory of gasest 

-·de q = - v' C' = - i.vdy , (4) 

where the quantity I. represents the mean free path of turbulent 
pulsations (mixture length). 

Close to the wall, throughout the boundary layer, t.. may be 
developed into series of power of the distance to the wall, and we 
may limit ourselves to the first term, having written 

),=o.y. 

I 
I 

I 
I 

II 

U. 'I 

a '" -~, b '" ~ ' 

aU\'isc ?'1U,-
Civisc = pv-ay- = ~ 

~ -. du el?'1Ue 3 
::lturil =;= - pU v = - pl,t dy = -ar- Y 

and small as ('.ompared with the flow oi the momentum transferred 
by viscou!l motion 

so tha t in the entire second region the velocitIes of the viscous and 
the turbulent motions are exactly of the same order of magnitude. 

h is easy to see, however, tha t the transfer of momentum in 
a viscous sublayer is realjzed in the main by the viscous motion. 
Indeed, the flow of momentum transferred by the turbulent pul­
sations would be equa I to (see Goldstein's monography, referred to 
above) 

unity. 

Inasmuch as when y '" ~ we ha ve definitely U"ise '" U z and VYl sc '" 

"" ~2' the constants a and b mU'lt be of the ordCI': 

~

:< 

I&. 

,j 
(" 

, 
~, 

...... 

9 K arm a n, Proc. of the Hh lot. Congr. for Appl. Mech" Cambridge;. 
p. i7, 19::1'•. 

.. 

,'= v- dl~V u2 = l)2 ~ V = l JY = 'J.i'V o · 

- ~Q y 
c1 =-.' 19" +co, (5)o c. 

Substituting this value of v- and t, into (4) and integrating, we· 
geL 

As far as v is concerned, it has a different value in the first 
and second regions. Precisely, in the first region we may, according 
to Karman, wri te 

where Co is the value oC C at y=~ and p=-!.. In the second region
eli 

0'2 is expressed by formula (3'). Therefore here 

a'\l 8 de 
q=-1i Y cry' 
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For the average concentration we get 

- Q~a (1 1) 
C! = 2v~ if -'0 '2 +Co' 

where c6,is the value of caty="'. 
Finally, in the third region,· when y <~' the transfer of mat­

ter is realized by molecular diffusion and for q we get 

q=-D­
de

dy 
.and 

c = _2 Y (y<~'). 
• D 

When y=o' the flows of matter transferred by turbulent pul­
:sations	 and by molecular diffusion become of the same order of 
magni tude. Therefore, for ~' we obtain: 

~, (D) II.,
r" "'" 

'/ 
- r".	 (6) ,. 

The relationship written down here is similar to the one writ ­
ten down by us for the case of a laminar boundary layer. , 

From equations (2) and (5) we get, evidently, 

q a~r2V& _ a2r2c 

(CI - c.) (u1-u.) p(u l - uo) 

value of constants --t and B cannot be determined from the experi­
mental data available at present and calls fur new scrupulously 
performed measurements of the limiting currents at high Reynolds 
numbers. Om' formula differs considerably from a similar formula 
obtained by Karman 10 for high Prandtl numbers. However; we 
cannot be convinced by its derivation, since in the course of this 
derivation the difference between 0 aQd ~' was not taken into account, 
while unfounded supposition as to the existence of a wide intermedi­
ate region b'etween the viscous sublayer and the turbulent nucleus 
of the stream was assumed. Besides, Karman takes for ~ranted. wi th· 
out any grounds for it, that the constants in the logarithmic laws 
uf distribution of velocities and concentrations have the same value. 

In the case of low Prandtl numbers, the formula obtained by us 
differ" little from that one deduced by P ran d t 110 

• However, the 
latter is not wholly correct, since Prandtl also made use of the suppo­

sition of the pquality of constants in the logarithmic laws for cand Ii. 
In conclusion, we wil'h to em phasi .I.e that in the case of rough pla­

tes the above resu Its lose their force. Fr'om the character of the con' 
elusion it is clear that the critical dimensions of the roughnesses 
that may change noticeably the character of stirring of the fluid 
will be of order of e' (but not of l), i. e. very smlill. 

Making usc uf the expression, obtained as a result or the best 
measurements, we get: 

. Thus, we have established the form of the function q'> (Re, Pr) 
'tor the case of a smooth plate. It really depends slightly on Re. The 

(i) 

u-
B = V 

O = const. 
o 

A­ 1- aIf and 

q ~ - e,ulc
l 

./ ]- 2l A + (Pr~S - A) B V i 
v~

P:F 
Cf = put ' 

2 

q = - p - [ ea ( I 1) eI J 
a~r~ [u. 1 - uel­ 2va ~~. - a'2 -15 ?' 

.Eliminating ce, we find 

V~CI 

.Arter simple tranformations we get 

\where 

~

,~

, 
I'<J 

~ 

~ 

.19 P ran d t I, Physik. Z., 29, '.87 (l~:!8). ' 

It is clear, from the physical viewpoint, that the rou!!hness of the 
electrode, hindel'ing the motion of the fluid and hamperin~ the 
iltirrin~ in the course of the turbulent flow, must also diminish, 
ceteris paribus, the magnitude of the limit current. 

In other cases f (Re, Pr) represents a certain function of Rey­
nolds and Prandtl's numbers, the form of which may to a certain 
extent be detel'mined from considera \.ions connected with the 
existence of the analogy pointed out ahove between the transfer 
of matter and of momenlum. 

Precisely, if the Prandtl number Pr were equal to unit.y~ 80 

. (D) 1/3 30,/ _ (D) lis . 30'1J{"", - - - -- ­
'I Fo " {--..PUi

Cr -2 
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that this analogy would be complete, then, evidently, there would 
hold the relation 

~f (Re, 1) = a.e" 

wh('re :z is a numerical factor (by no means equal to unity, gene­
rally speaking, as is usually erroneously assumed in similar cal­
culations of the theory of heat conduction). 

If, however, PI' =i= 1 and the similarity of the transfer of matter 
and of the momentum is not complete, we may still write 

f(Re, Pr)=ep(Re, Pr-)cJ{RE'), 

where <p (Re, PI') is some new function of Re and PI', concerning 
which we may but affil'lIl that it depends to a relatively slight 
degree on the Reynolds number and, moreover-, in such a way that 
a t PI' = f, rp (Re, 1) turns into a constant 2:, TIH~I'efore, for the den­
sity of the limiting current in the gener-al case we may write 

jlim = eCjl (Re, Pro) Cju/c (1') 
" 

Already from the latter ver-y general expression, impol'Lant elec­
trochemical consequences may be df'rived, Precisely, inasmuch as 
the coefficient of resistance itself USua lly decreases slowly wi th the 

I	 }: 

increaSe of	 Re or does not depend on Re a tall, it is pOSSible to 
~	 affir-m that the limiting eurrent must be propol'tionalto u[, where 

the power index n is somewhat less than unity or simply equal 
to it. Her-e, inasmnch as the characteI' itself of the dependence 
of Cj on He turns out usually different in diffel'ent I'egions of Rey­
nolds numbers, the vDlue of n may depend on Re. 

Let us consider three caSes imporlant f!'Om a practical view­
point: an electrode having the form of a smooth plate of large 
dimensions, a rotating dise and a cylindrr r-otating inside anot.her 
coaxial cylinder at rest. The total coefficient of I'esistance of a plate

I 
with a degree of exactne8S sufficient for om' purpose may be writ. 
ten in the form of 

CJ ,,-,0.07 Re- l/s , 

so that the total limi ting c~.II'rent may be proportional to the velocity 
of the Clow u/ to the power 4/5, The turbulization of the flow takes :l 
place when Re",3xlO"in a quiet flow, but may OCCur also at 
much smaller values of Re'" 10 \ if the flow running on the plate 
is highly perturbed.	 :\ 

1(.' 

In the case of a disc, the coeffic: en t of resistance is expressed 

~ 

I 
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by an approximate formula of the type cf"-' Re-l/s , so that the 
limiting curren t is again proportional t.o u/ "-' rw to the power 4/;. 
Turbulence sets when Re'" 5 X 10·, 

Finally, for a rotating cylinder, it is possible t.o consider very 

roughly c, '" ReO.• [ where Re = ":: (rz -'1) ] ' '1 being the radius of 

the inner rotat.ing cylinder and '2-the radius of the outside resting 
one, so that the limiting current is proport.ional to the rate of rota. 
tion to the power 0.6, As is known, the motion of the fluid in t.his 
case is unstable and turbulence set.s on relatively very early. 

6. Discnssion of the results obtained and comparison with the 
experiment 

In order to check the theory exposed above, we may make use 
of a large number of papers published at different periods, in which 
the concentration polaril.8tioll i n the coursl' of electrolysis in val'ious 
conditions, or the rate of heterogeneous reactions, in particular, the 
rate of the dissolution of meLals, were studied, 

In the case of eledrolysis, usually the full volt-ampere charac­
teristic (polaril.ation curve) of the disrharge with various kinds of 
stirring of the solution had been obtained. 

As far as the rates of heterogeneous reactions are concerned. 
in order to check the theory \'ie may make use of the data relating 
to the cases, when the general rate of the reaction is detel'mined 
by the rate of the convecti ve diffusion of some agent, either from the 
solution towards the surface upon which the reaction takes pI act' 
or away from it into the solution. 

A great number of heterogeneous reactions is described in litera­
ture, the rate of \\ohich is determined by the supply of reactant to or 
away from the region where the reaction takes place, but not by the 
rate of the chemical reaction itself, which may be considered here 
arbitrarily high, The quantity of the matter that has participated 
in the reaction will in:these cases be determined by the diffusion cur­
rent of that, reaetant, the supply of which to the reaction rel:?lon 
determines its full rate. 

Pl'ior to proceeding directly to compare the t.heory of the diffusion . . 
boundary layer with the experiment, it is neuessary to discuss the 
possible sources of inaceuracies of the theory and the limits of its 

II 
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applicability. The application of the theory is limited first of an 
by the requirement that the Reynolds numbel's of the flow of the fluid 
past the electrode be sufficiently large as compared with unity, 
so that the Prandtl theory of the boundary layer' might be made use 
of. Practically this condition is always realized. 

The dependence of the diffusion coefficients on the concentration 
of the solution that has not been taken into account by us is a source 
of a possible inaccuracy of the theory. In reality the diffusion of ions 
is realized with a varying diffusion coefficient, inasmuch as the 
concentration of the solution changes noticeably from point to 
point within the diffusion layer. The dependence of the diffusion 
coefficient on the concentration is relatively slight and cannot 
change the order of magnitude of the quantities obtained. It can, 
however, tell on the value of numerical coefficients. Also, in the 
theOl'y the influence of natural convection on the transfer of ions 
in the solution was not taken into account. It is.clear, however, 
that in the case of a sufficieutly enel'getic stirring this influence 
would be insignificant. 

The most serious shortcoming of the theory exposed above is tIle 
fact that the expl'essi6ns obtained for the limiting current hold only 
for such a ease, wIlen there are two kinds of ions in the solution.. , 
or when the concentration of ions liberating at the electrode is small 
as compared with the concentration of the other ions. 

Already in the case of three kinds of ions, we have been forced 
to restrict. oUl'selves to the investigation of the motion of ions in a 
resting diffusion layer, as was done in the old Nernst theOl'y n. 
We may, however, assert that qualitatively the formulae for 
the effective thickness of the difful'ion layer obtained for a binary 
electrolyte hold also for the case of a solution containing three 
or more kinds of ions. 

Therefore, although in this' case we have not succeeded in find­
ing an exact solution of the equations of convective diffusion, and, 
consequently, the exact expression for the diffusion current, still 
qualitatively we may, as previously, make use of the expressions 
obtained above. 

As we have emphasized mor'e than once, of essential significance 
is the circumstance that the forulUlae for the diffusion current hold 

11 L e.v i c h, lo be puhlished shol'L1y. 

..
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qualitatively not only for an electrode representing a plate in a 
flowing liquid or a rotating di·c, for which cases they were derived,. 
but also for electrodes that represent a 'cylinder rotating around 
one of the axes. 

Both of the circumstances pointed out playa very essential role 
iIi comparing the theory with the experiments performed usually 
in complicated geometrical conditions and in the presence in the 
solution of a great number of different kinds of ions, as well all ill the 
application of the theory to the practice of electrolysis or electrode 
position. 

As far as the character of stirring is concerned, the greater part 
of the performed measurements may be naturally divided into three 
groups: experiments in which mixing was reali.:ed by revolving 
an 'electrode of any shape; experiments with mixing of the solution 
by a mixer; alld experiments in which attempts were made to 

-, exclude mixing altogether. 
In section 3 we have already pointed out that it is practically 

impossible to get rid of the natural con\~ection, with the exception 
of the case of non-Newtonian fluids. Therefore, we shall not consi­
der here a t all the experiment.s of the last type. 

As far as experiments in which the mixing of the sol ution I 
is performed by a mIxer are concerned, they have a number of 

) serious shortcomings. The most important of these is the indefi­
niteness of geometrical conditions of the experiment. It is clear 
that the character of stirring will in this case depend on the shape 

I 
of the mixer, on its si~.e and the distance from the electrode, on 
the shape of the latter, etc. 

Besides this, in the case of very high rates of rotation of the 
. mixer, the mixing of solution will be strongly influenced by 

the formation of the regions of rarifications behind the paddles 
of the mixer, due to the cavitation phenomenon-a phenomenon 
well studied in the case of propelling screws. 

Therefore experiments with the mixing of the solution by a 

",'(­ mixer are unsatisfactory from a theoretical viewpoint. 
However, it is possible, apparently, to make use for a yualitative 

control of the theory, of the data of such experiments wi th mixing 

I 

I 
by means of a mixer in which the size of the mixer was sufficie~tly 

~~ large as compared with the gap between the electrode and the mixer 
paddles. 

lA. ..... 
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centre and parallel to the generatrix. Apparently, the geometri­ 0 1 VJ -L,fboundary of a diffusion layer, and, on c;lI conditions of flow 'were considered to be simplest in this 
ancli~ potentcaLthe other hand, by the universal quan­1case. In reality, however, the investigation of convective diffusion II FiL!. :1. The lH'ical po];,rizali"rl 

CUl'n~s for v;11'iuus cnnccntriJ l i lJl1~in the case Qf a revolving cylinder is bound with considerable tity (2_ ~)kT of solution.
11- III () •2difficulties. For an infinite cylinder the problem has no stationary 

solutions at all: the concentration of the solution turns out to beII The greatest interest is offer'ed by the dependence of the vallie' 
infinitely increasing as the logarithm of the distance from the axis , of the limiting (diffusion) cunenL ilim on the fundamental quantities 
of the cylindel', similarly to the case of an electric potential in an that determine the properties of the solution and the eharacter or 
analogous problem of electrostatics. In the case of a cylinder of stirring. There are, first of all, the concentration of the solution c/, 
finite length, the problem becomes mathematically very difficult. then the ra te of the flow of the fluid or of the revolving of the eI eet­

Therefore the data of the experiments with the electrode in the rode V , the viscosity of the fluid 7j and the coefficient of diffusion D.o
form of a revolving cylinder may be used only for a qualitative con­ Besides, the dependence of the limiting current on the temperature is 
'trol of the theory. After thesegeneral remarks, we may go over to also of interest. We shall discuss first qualitatively the general charac­
a direct comparison of the results of the theory \vith those of the ter of the dependem;e of him on the values enumerated, which maY be 
experiment. done on the basis of a rich experimental materiaL inasmwh as the 

The existence of a limiting current that may pass through the so­ geometrical eonditions of mixing (the shape of the eleetrodes) and the 
lution a t given conditions of mixing is the main conclusion of the number of the ionic species represented in the solution influew:e 
theory exposed. This condusion relates to the case of a binary elec­ but little the character of the dependence itself. Afterwards, we shall 
trolyte, as well as to the case when there are in the solution additions go over to the quantitative eomparison of lhe calculated and the 
of indifferent electrolytes, the existence of the limiting current being observed values of fum in the scal'ce number of ca'!les, when such 
independent of the specific geometricai conditions, but being con· 

~I 
a comparison is possible,
 

nected with the existence of a diffu:;ion boundary layer itself. The
 The direct proportionality between the limiting (diffusion) CUI'­
-curves shown in Fig. 3 demonstrate the general picture of the depen­ ;)

Acta Pllysicocl1imica U.ft.S.S. Vol. XVII. 1\0. &-li . 
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In this case t.lla elect.rode may be regarded as a plat.e past whiGh' 
moves a given plane-parallel stream of the fluid dragged by the 
mixer. From the theoretical point of view, stirring by a flat revolving 
disc is the simplest method of mixing the electrolyte. The theory 
of this method may be developed to the end, as was shown in section 3. 
At the same time. it is exactly this method that is used most fre­
quently in practice of electroanalysis. lJnfortunately, up to now 
there have been no sufficiently precise experiments performed with 
a revolving disc Realization of such experiments would be of 
gre;:.t interest. 

In a large number of published papers the measurements were 
performed without a sufficiently clear comprehension of the hydrod y. 
namic picture. in complicated geonletrical conditLlns, that made dif­
ficult the quantitative analysis of the obtuined results, In the m>-do­
rity of the experiments, in partir;ular, there was used as a revolving 
electrode a cylinder revolving about an axis passing through its 

The Theol'j' of Concentration Po1:lrization ~lOl 

dence of the current. passing through the solution on the poten­
tial differenee applied between the electrodes for a revolving 
electrode. 

We see that in full accordance with the theory in the Case of a small 
potential difference V, when the passing current is much less than 
t.he limiting one, a linear dependence 60 -.---. 

between V and the enrrcnt density i ta­
kes place, i. e. we find oUf'selves in a I'C- JO 

gion where Ohm's law can be applied. 
When the applied potential difference 4'40 

inereases, the CUf've bends and becomes ~ 
" parallel to the abcissa at i = ilim and ":l JOf--H--Y--+
 

F = Vlim · The value of the critical po- ~
 
tential difference Vlim , as may be seen .3 eo
 
from formula (40), seeLion 3, is deter­

mined, on the one hand, by the ohmic fa
 

potential in the solution down to the
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I'ent and the concentration of the solution called for by the theory 
was already established by Nermlt and Merriam's experiment~2, 

and served in its time as one of the main arguments in the estab­
lishing by Nernst of the dirfusion layer theory.

il These results by Nerm.t and Merriam )ver'e confirmed repeatedly 

Ii 

II. in more recent works. Fig. 3 shows the results of very exact measure­
ments of Wilson and Hughes 12 of t.he limiting currents for 
the reduction of Fe-:-++ in Fe+. In all cases the direct proportion­
ality between the diffu\ion current and the concentration of the 
solution is observed with great exactness. 

Particular theoretical and practical illterest i" offered by the de­
pendence of the limiting curl'ent on the velocity of motion of the fluid. 

I As we have seen above, the theory leads to a proportionality of the 
limiting current to the square root of the velocity of the fluid for u 
laminar flow and to a proportionality to a higher po\ver of veloeity 
for a turbulent flow past t.he elecb'ode. The power index increasesIII 
in the latter case from the value of 0.6-0.8 almost up to unity with 
the increase of the Reynolds number uf the flow. As far as the expe­
rimental data are concerned, it has been r'epeatedly pointed out in 
literature that there is a noticeable differenue between the' J'esult:; 
obtailled by different authors con0erning this point. For instance, theII 
data obtained hy Eucken 3 are in g-ood agr'eement with the power 
index 1/2(see below). Nernsl and Merriam gave an empirical formula 
1'01' a limiting cUI'rent with the index 0.6 2. Br'uner 1 has obtained 
11 omewhat gr'eater inde:-- 10.66). Ellcken ~ has pointed t.) a peopoI'­
tionality of the limiting current to the revolvi ng spp.pd of the electrod 
t.othepowerO.5-0.6. In ','an N amc's IS experiments the diffusion 
CUl'I'ent turned out to be proportional to the velocity to the power 
0.7-0.9. Aecording to Wi 1 del' rn a n n'\ the index is equal 
to unity. In K i ng'sU, experiment~ on the fate of dissolution 
of zin~, the peripheral speed of the diw! ving cylinder was brough t 
up to 27 m./sec. (which eorresponds to t.he value of Reynolds num­
hers of about 2.7 X 105

). Here the obtained results correspond to a 
proportionality of the diffusion current tu the rate of rotation to the 
puwer 0.7-0.8. 

12 Wi 1 son and II ugh e s, Ind. and Eng. Chern., 607 (1923).
 
IS Van N arne, .'\mel'. J. of Science, 29, 237 (1910).
 
U Wi J de r III ann, Z. physik. Chem., 66, 445 (1909).
 

III IS Kin go and S c hac k, J. :\mel·. Chem. Soc., 57, 1212 (1935). 
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~urh a discr'epam:y in the expel'imental result~ may be naturally 
rxplained by the different degree of turbuliz?tlon uf t.he ele('.trolyt~ 

Is which flows [ll:lst the electrode 
In llew e),periments by Eucken speciol pr'ecautions were taken 

ill order to insure ::I laminar flow of the fluid; and the lowest.due 
uf the power inde': or the velocity 1/2was obtained in good agreement 
with the theory. In other experiments, lIO precautions to insure 
the laminar flow of the eleetrolyte in the neighbourhood of the 
electrode were taken. 

In Nerl1fit and !'.ferriam's experiments a thin wire was used os a 
revolving eledrode: the number of revolutions was relatively sm:ill 
(up to 600 r. p. m.), so that the Reynolds numbers must have been 
rather small, and a strong turbulization of the current was not to 
be expected. In Brunner and van Name's experiments mixing was 
effected by a mixer moving close to a flat eledrode. 

In Br'unner's experiments the Reynolds numbers were of the order 
of Re""'-'2 000, so that the turbulization of the flow also should have 
been still insignificant, but, judgin~ by the r'esull,; (n......., 0.66), already 
noticeable because of the pOOl' geometrical conditions. 

" Tn van Name's experiments therr. was, apparently, strong tUl'bu­
lrnce of the (,·ul'I'ent. The Reynolds Humher:; in these exper'iment::; 
r-eached the value of Re""'-'104 _'10"\ while the geometrical cOf.ditions 
also favoured the turbulence of the t;lll'l'ent. 

King'~ data relate ,,;holly to a [,UI'bulent £10\\1 past the electrode 
Heynolds numbers lie between 3x10· and 2x10". while the model 
(Hssolved in these experiments had the Rhape of a cylinder or disc. 
It is known, however, that, when a cylinder is rotating even in the 
Case of relatively small Reynolds numbers, the motion of the 
fluid is not stable and becomes turbulent. 

Thus, it is, apparently, possible to assert that the discrepancy 
observed in the experimental data is in reality connected not with 
~carcely probable errors of measurements, but with the different 
degree of turbulence of the stream of the fluid in different expe­
I'iments. OnLhe whole, although no systematic measurements of the 
limiting current in simple geometrical conditions (for instance, for 
a flat electrode) were performed in a sufficiently wide range of Rey­
nolds numbers, which includes the regions of a laminar as well 
as of a turbulent flow, the comparison of the data obtained by dif­
ferent authors demonstrates cleady that the character of the depen­

;)* 
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dence of the limiting current on the rate of flow is in a good agree­
ment with the theoretical conclusions. 

The df'pendence of the limiting current on the coefficients of 
diffusion is in general rather complex. In the case of a binary electro­
lytethe limiting current, according to formula (42) section 3, varies 
inversely to the 1/3power of the effective diffusion coefficient D and 
is proporLional to the diffusion coefficien t of the ions which calTY 

the current D I • 

If differen t kinds of the ions are represen ted in the solu lion, 

lhis dependence if> still more complicated. 
Since, however. the diffusion coefficients of different ions, with 

the exception of ions H
3
0+ and OH-, differ from each other to a reI a ­

tively small degree, we may approximately consider that the 

limiting current jlim is proportional to 
ilim "-' DO.GO. ( l) 

Such a dependence is in a good agree~ent with Eucken's mea­
"llrements reported in the work refel'l'ed to above more than onr.e, 
and also with Kin 2;':'0 data 0n dissolution of metals 16, in which 
there was observed a proportionality bet\\eell the l'attr of the difiso­
lution and the diffusion coefficients of different ions to, the power 
of from 0.7 to 0.83. Although the power 0.83 is Loa large, we ought. 
to beari n mind that the diffusion coefficients depend on the COll­

(\cntration of solution, and in certain cases, as, for instance. in the 
case of HCl, change considerably in the pl'esence of salts, so tha t 
the accuracy of the~e experiments is not high. 

The dependence of the limiting current on the Yiscosity in the case 
of a laminar flow may be represented by the semi-empirical formula 

• '1 
!lim"-'./Io' (2) 

Indeed, according to formulae (46) sect,ion 3 the limiting curr­
D"13 

en 1. varies as fUm"""" -1-/ . On the other hand, however', with the 
'/ 6 

change of viscosity the coefficient of diffusion also changes, arroJ'­
ding to the empirical law D·fL=const. 

Inasmuch as the density of the fluid changes with the temperature 
only to a very small extent, one may approximately consider that 

D ",-,~, whence the formula (1) given above is obtained. 

The Theory of Concentration Polarization :10:' 

Formula (1) is in a good accordance with Lhe data obtained by 
King 17 when dissolving zinc in an acid, The viscosity of the solu· 
tion changed by adding sugar. It was found then that the rate of the 
dissolution varies approximately inversely to the viscosity. Taking 
into consideration the relative roughness of the experiment, it seem,; 
scarcely possible to distinguish between the powers 5/6 and unity. 

The measurements of the dependence of jlim on the temperature 
may be used only for qualitative conclusions as to the nature of the 
factor determining the rate of a definite heterogeneous reaction bu I 
not for quantitative judgments as to the dependence of jUm on the 
eoefficients of diffusion or on the viscosity of the solution. 

The rather slight dependence of the rate of heterogeneous reactioll 
on the temperature shows that the rate of reaction is limited by the 
supply of the substance to the region where the reaction takes place, 
but not by its kinetics. 

Because of the sLrong- dependence of both quantities, entering 
moreover into the expression for jUm in a complex comhination, i [. 
does not seem possible basing on the temperature dependence to draw 
any conclusions as La the proportionality of i Um Lo some power of 
the diffusion coefficient or viscosi ty. 

From all the above said we may conclude that the theory of the 
diffusion boundary layer developed above is in a good qualitative 
[lg'reemenL with the experiment. However, as far as the quantita­
tive compa1rison is concerned, we have succeeded ill doing it only for 
Eucken's experiments~. In these experiments the current passed 
between two platinum electrodes in a solution of Kl and KCI in the 
presence of 1-, Br-and HsO+ playing a role of depolarizing agents. 

One of the eleetrodes was represented hy a resting plate of larg~ 

dimensions, so that the current passing through the solution was 
always small as compared with the limiting current to this plate, 
therefore it was possible to neglect the polarization phenomena on 
this electrode. 

The second electrode was a plate 0.28 cm. in height and 0.089 em. 
in width. The stirring was realized in Ihe following manner: past the 
focond electrode there moved the extel'ior wall of the cylindrical 
vessel containing the solution and Lhe electrodes, The distaJll:e bet­
ween the electrode al1d the moving wall varied from 0.05 up to 0.4 cm 

17 Kin g, J. :\mcl'. Chem. Soc., 57, 828 (19%).
16 Kin ~ and H 0 \v a I,d, . Ind. and Eng. Chem., 29, 75 (1937). 
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and was t.hus always gl'eater than the corresponding thickness of the 
boundary layer. The Reynolds numbers of the flow did not exeeed 
Re",104 

• Here, as is emphasized by Eucken, the flow past the plate 
remained strietly laminar, so that for the limiting current for­
mula (12') section 4 may be made use of. Table 1 sho\\~s that between 
the theoretical and the experimental values for the limiting current 
there is a wholly satisfactol'y agreement. 

Tuble 1 

The dependence 01' the limiting curTe.lt on thil 
anA""lal' velocity 

[ilL = H8. 3, J c,,]c= I. 33 X 10-4 A, J l,J1S= 1. 1;) x 1O-4A; 

''',= 10.:1. .1,."",=0.671 x 10- t A, J ulls=O.685x 10-4;\ 

_. _. _.=­

(.Teale)l (J ObS);WI 

lU~ (.lcalC) ~ «~),I 
1. 1ft 1.091.27 

1. !'if) I, 1. 22 1.1:l 
1. ::I;)2.::19 1. ::if! 

It ought to be observed that because of probably accidenl<ll 
causes, just as lood an agreement exists between the undoubtedly 
incorrect theol'etieal formula of Eucken himself and his experi­
mental data. 

As far as the quantitative eomparison of the above results with 
other experiments is concerned, this eomparison is restricted, as has 
been pointed out more than once, due to the differences in geometl'ical 
conditions. 

Howevel'. in spite of this, the agreemenL between the theory and 
the expe['imental data turns out even more satisfactory than might 
have been expected. Thereis, in particular, a quite good quantitative 
agreement with Nernst and Merl'iam's experiments 2 • These aLlthol'~ 

give for the thickness of the diffusion layer the empirical formula 

0" = 0.05 
ZO.U 
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In the range of the number of ['evolutions Z pointed out this 1'01'­

mula is in a good quantitative agrecment with formula (<'15') section :·L 
Sllmlnarizing all that has been said, we a['e able to conclude that 

the exposed theory is in a very good agrecment with the experiment 
However, .<1 precise experimental study of the phenomena of con­
centration 1Jolarization in a wide range of Reynolds numbers and sim­
pIc geometrical conditions, allowing to establish decisively the 
quantitative asreement between the theory and the experiment, 
is highly desirable. 

I n conclusion I wish to express my deep gratitude to Prof. L. Lan­
dau and Prof. A. Frumkin for interest in this wOl'k and valuable 
discussions of the results, 

Appendix to sertion 3 

The integral I~ is equal 
1 

1 - S rli - __ 
; - . - I'.. ( (I) 

o n2! [Je-(I3+~t4+''')dt+\'e-(IJ-t1l141'''')dtJ+c" 
(n2 - nl)Dlc ~ 0 

II';' 1I 

In the last integral the denomina Lor never exceeds LI ni [.y. TLtere­
fore, the exponential funct,ion may be developed into series and 
we have approximately: 

(0) 
c(n, - Ill) cDl 19 - n j'o'

2 
21 ~ n,i c(O) + (n~ _ Ill) Die 

where dO) is the value of c at z = 0 [in the plane of the disc, 
see (29') section 3]. 

Evidently, in the same approximation we have 

n2t8' ~ c(l) ,C(") --1- ) D C 
(II, - n l 1 

so that 
c(O)

(no - n l! cD L 19 dO.I" :::::. 
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where Z is the number of revolutions, which amounted to severa I 
h Ul1dreds per minute in these experiments. 


