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We consider the noise properties of systems which retain local equilibrium although a constant elec­
trical current passes through them. We assume that heat exchange occurs fast so that the tempera­
ture in each point of the system is the same. We obtain from the quantum theory of irreversible 
processes for such systems a fluctuation-dissipation theorem, according to which the noise level of 
the system in a stationary state is determined not merely by the linear properties (active part of 
the impedance) but also by the non-linear properties of the system connected with quadratic detec­
tion. To illustrate the fluctuation-dissipation theorem it is applied to evaluate the noise of a p-n 
junction with a sufficiently large diffusion length of the minority carriers. 

J. There are not many papers devoted to a consideration 
of fluctuations in a stationary state. Lax [1J used the 
theory of Markov processes but the region of applica­
bility of the results obtained is small since he postu­
lated for the connection between the correlation function 
and the macroscopic kinetic characteristics the validity 
of Onsager's assumption about the macroscopic charac­
ter of the damping of the fluctuations. Bernard [3 J used 
the quantum theory of irreversible processes to show 
that the fluctuation-dissipation theorem in its usual 
form does not occur in a stationary state. Bunkin [4 J 
used the quantum theory of irreversible processes to 
give a definition of an effective noise temperature in a 
stationary state. 

We must emphasize that inC3 , 4 J as also in other 
papers on the quantum theory of non-linear irreversible 
processes (e.g., in [sJ) systems are considered which 
are characterized by an interaction which is linear in 
the force which is acting. Only Stratonovich [BJ men­
tions the desirability of studying systems with an in­
teraction which is non-linear in the acting force. 

In the present paper we consider systems which are 
characterized in general by an interaction which is 
non-linear in the applied force. The introduction of a 
non-linear interaction is dictated not only by a wish to 
have a general discussion but also by the necessity to 
elucidate the presence of rectifying properties in real 
systems. As was shown in[ 7 J, systems with an interac­
tion which is linear in the force do not have rectifying 
properties. 

2. We assume that the introduction of a thermody­
namic force F ( t) ( t-time) can be described by an 
additional term H' in the Hamiltonian. The term H' 
will be the interaction of the system studied with a 
perturbing system (i.e., with a signal generator). We 
have 

II= H 0 +H', ( 1) 

where Ho is the Hamiltonian of the unperturbed system. 
The interaction H' depends, because of the way it is 
introduced, not only on the dynamic variables (on the 
point in phase space) but also on the force F as a 
parameter. In particular, if the force F vanishes, the 
interaction H' also vanishes. 

For small values of the force ( F =~F) the inter-
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action H' can be written as a power series in the small 
quantity ~F: 

H' = -FQ = -M(Qo + MQ, + f..F2Q2 + ... ) , (2) 

where Qo, Q1, Q2, ... depend only on the dynamic vari­
ables. 

The correlation function Ko ( t) responding to a 
generalized current which is the thermodynamic conju­
gate of the force F can be expressed in equilibrium [sJ 

in terms of the average of the anticommutator [ Q0 ( 0), 
Qo(t)]+: 

Ko(t) = 1/z( [ Oo(O), Qo(t) l+>o = 1/2Sp{po[ Qo(O), Qo(t) ]+}. (3) 

We emphasize that the operator Qo is the non-trivial 
factor (coefficient) in the term linear in ~F occurring 
in the interaction of the system with the signal gener­
ator. The time argument of the operator indicates that 
the operator is taken in the interaction representation. 
Thus 

Qo(t) = exp(illot/ft)Q0 exp (-iHot/ft), 

where i is the imaginary unit and n Dirac's constant. 
The pointed brackets (with index o) denote averages 
using the equilibrium density matrix p 0 : 

Po= exp(-Ho/kT)/Sp{exp(--HdkT)}, 

where k is Boltzmann's constant and T the absolute 
temperature. The operator Qo is defined by the usual 
relation Q0 = (in) -1 [ Qo, Ho], where the square brackets 
indicate a commutator. 

Let a force F0 , constant in time, act upon the sys­
tem. After a relaxation process some state is estab­
lished in the system which, strictly speaking, is not 
a stationary one. However, if the power dissipated in 
the system is small so that during time intervals of 
interest to us the change in the energy (and entropy) of 
the system is vanishingly small compared with the 
energy (entropy) itself we can introduce the concept of 
a quasi-stationary state. We denote the density matrix 
of such a quasi-stationary state by p 0 • 

Using the density matrix p 0 , it is clearly impossible 
to evaluate the stationary current of the force J 0 but 
on the other hand one can use p 0 to evaluate the addi­
tional currents arising when we impose on the system 
an additional force ~F. The density matrix p 0 must 
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by virtue of the way it was introduced commute with the 
Hamiltonian of the stationary state H0 : H0 = H0 - F0Q0 • 

We expand the operator Q in powers of the additional 
force LlF near the stationary state. We have Q = Q0 

+ LlF Q' + }"2LlF2Q" + ... The operators Q0 , Q', and 
Q" refer to the stationary state and depend on the force 
F0 as parameter. We find for the Hamiltonian H, using 
the expansion for Q, 

H = l/0 - !J.FR- !J.Ji"2S- ... , 

where R and S refer to the stationary state and we 
have for R and S: R = Q0 + F0 Q', S = Q' + :Y2F0 Q". 

Among actually existing systems we can separate 

(4) 

a rather wide class of systems which in a quasi­
stationary state retain local equilibrium (or more 
precisely quasi-equilibrium). Just to this class of 
systems belong the systems considered in the thermo­
dynamics of irreversible processes. We assume that 
heat exchange between different parts of the system 
takes place sufficiently rapidly. We can then charac­
terize the whole system by a single temperature T 
(which, of course, increases with time, albeit slowly). 
The density matrix p 0 of a system with a fast internal 
heat exchange has an equilibrium structure when local 
equilibrium is present: 

p0 = exp(-H0/kT)/Sp {exp(-l/0/kT)}. (5) 

The validity of (5) indicates that the system under 
the action of the force F0 goes over into a quasi­
stationary state and that that state is already also a 
quasi-equilibrium state. A system reaching such a 
quasi-equilibrium state will fluctuate in about the same 
way as if it were in a new equilibrium state. The cor­
relation function K ( t) referring to the flux of the 
force LlF must therefore be such that it can be written 
in the form 

K(t) = 1/2([R(O),R(t)]+> = 1/2Sp{p0[R(O),R(t)]+}, (6) 

where the operator R is the non-trivial factor (coef­
ficient) in the term which is linear in LlF which occurs 
in the perturbation caused by the application of an ad­
ditional force LlF. The angle brackets (without the 
zero index) indicate averaging using the density matrix 
(5). The time argument here and henceforth shows that 
the operator is taken in the interaction representation 
using the stationary state Hamiltonian H0 • Thus 

R(t) = exp(ill0t/li)R exp ( -il/0r/li). 

The operator R is defined by a commutator with the 
Hamiltonian already of the stationary state: 
R = (iri)- 1 [R,Jf']. 

We shall call the fluctuations occurring in the sta­
tionary state when (5) is satisfied thermal fluctuations. 
For the spectral density ET ( w) of the thermal fluc-

tuations we can according to the Wiener-Khinchin 
theorem [gJ write 

+oo +co 
e;;(w)=2 ~ eU.1K(t)dt="' ~ dteiwtlf2 ([R(t), R(O)t). 

The density matrix p 0 satisfies the condition 

p0 (H0 +1iw) = exp(-liw/kT)p0 (l/0). 

There exists therefore between the average values of 
the commutator and of the anticommutator of any two 
operators B ( t) and A ( 0) the general relation [ 1oJ 

(7) 

+oo +oo 
~ dt eiwtl/2 ([B (t), A (O)t> = E (T, w) ~ dt (iiW'eiwt ([B (t), A (0)1>, 

-oo -oo 

where E ( T, w) is the average energy of a quantum 
oscillator with eigenfrequency w which is equal to 

(8) 

liw 1 + exp ( -liw/kT) 
E(T,w)=21-exp(-llw/kT) · (9) 

Substituting into (8) B ( t) = R( t) and A ( 0) = R( 0) 
we find for the spectral density of the thermal noise 

+"" 
&;(ul)=2E(T,w) ~ dteiw<(inf'([R(t),R(O)]). (10) 

-co 

The function i -1 < [R ( t), R ( 0 )j >is an even function 
of the time. Hence, we have instead of (10) 

e;;(w) = 4E (T, w) ~ dt(ili)-1 coswt ([R(t), R(O)J>. (11) 

We evaluate now the time average of the power LlP 
which is additionally dissipated in the system when an 
additional force LlF is switched on: 

!J.F = V0e'1 cos wt, e > 0, (12) 

where E is the parameter of the adiabatic switching on 
of the additional force, Vo is a small quantity. We 
perform the calculation in the established regime in 
the first non-vanishing approximation in Vo (i.e., in 
second order in the quantity Vo). 

For the power LlP we have 

!J.P = ( (ih)-1[l/0, l/])<2> = ( (ih)-1[l/0, l/0 - !J.FR- !J.Ji'2Sj)C2) 

= M<R><•> + 1'1fi"2<S>. 
The index on the angle brackets indicates what order 
in V o we must retain. Hence, LlP = LlF < R > w. 

We can rewrite the expression for ( R) <1 > using the 
general formula[aJ for an arbitrary operator B: 

t 

(B)(!l =(ih)-1 ~ dt1M(t1)([R(t!),B(t)]). (13) 

Putting B equal to R we find 
t 

<R>c'> = ~ dt,!J.F(t,)(inr'<[R(ttl. R (t)J). 
-00 

Bearing in mind that we can under the trace sign 
cyclically commute the operators and also that 

EiXp(ilJOtjfi)exp(-iiJ0tjfi) = 1; (p0, exp(-il/0t/fi)] = 0. 

We get 
t 

<il><'>= ~ at,tJ.F(t1)(inf'<[R(t,-t), R(O)]). 
-00 

We introduce a new integration variable t 3 = t 1 - t. 
We get 

0 

(il)''>= ~ at,!J.F(t+t,)(in)-'<CR(t,), R(O)J>. (14) 

The time average of the product cos wt cos ( wt + wt3) 
is equal to Y2 cos wb Hence we have for LlP 

0 

!J.P= 1/ 2 Vo2 ~ dt 3 (inf'coswt3 ([R(t 3 ), R(O)]). (15) 
-00 

A comparison of (11) and (15) enables us to establish a 
fluctuation-dissipation theorem for systems in a 
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quasi-stationary, quasi-equilibrium state: 

eT2 (w) = 4E(T, w)!!.Pji';J?2. (16) 

3. We shall be interested in electrical systems. It 
is clear from (16) that the level of the fluctuations is 
closely connected with such macroscopic characteris­
tics of the electrical system as the coefficient (the 
non-trivial factor) in the additionally dissipating power. 
However, there arises some ambiguity in the choice of 
the power. 

We are referring here to the fact that we can take 
for the force F either the electrical current or the 
gradient of the potential. In the first case, the current 
which is the thermodynamic conjugate of the force F 
will be the gradient of the potential; in the second case 
the current thermodynamically conjugate to the force 
will be the electrical current. In the first case Eq. (16) 
gives the magnitude of the level of the fluctuation emf 
when the leads of a two-terminal network are open for 
a variable current. In the second case Eq. (16) must 
give the magnitude of the level of the fluctuation cur­
rent flowing through a two-terminal network in the 
regime where it has been briefly closed for a variable 
current. The levels of the fluctuating current and of 
the fluctuating emf must then be connected by the elec­
trotechnical relation 

JT'(w) = eT"(w)/IZ(w) 12, (17) 

where Z ( w) is the impedance of the two-terminal 
network in the stationary state with frequency w. This 
is just the situation in the case of true equilibrium 
when there is no steady current flowing through the 
system. 

When a steady current is present it is impossible to 
use Eq. (16) to calculate the level of the fluctuating 
emf and the level of the fluctuating current since then 
Eq. (17) is no longer valid. Hence, the choice of the 
force F to be either the electrical current or the 
gradient of the potential is no longer arbitrary but un­
ambiguous. The force F must in all cases be either 
the electrical current or the gradient of the potential. 

Let there be several independent two-terminal net­
works which subsequently are joined up in one large 
two-terminal network. If we assume that Eq. (16) with 
the same success must describe noise properties both 
of the separate two-terminal networks and the noise 
properties of the large two-terminal network it is 
necessary to reach the conclusion that we must take 
for the force F the electrical current. The level of 
the fluctuation current is determined from Eq. (17). 
From a comparison of (16) and (17) it is clear that the 
level of the fluctuation current IT ~n also be calcu­
lated from Eq. (16) if we take for boP the power which 
is additionally dissipated in the system when there is 
a permanent constant current and for ll.F2 the average 
value of the square of the additional variable potential. 

For an electrical two-terminal network we can ex­
press the value of ll.P/ll.F2 , in terms of r ( w), the 
active part of the impedance in a stationary state, of 
I = F 0 , the constant electrical current transferring the 
system into a stationary state, and of the quantity 
lj! ( w) characterizing the rectifying properties of the 
two-terminal network. As a result we get instead of 
(16) 

eT2 (w) = 4E(T, w){r(w) +J'l'(w)}. (18) 

It is well known [uJ that when an additional current 
b.l = b.F is switched on which varies with time accord­
ing to (12) there arises in first approximation in the 
small quantity V 0 a variable component of the potential 
changing with the main frequency w. In the second ap­
proximation in the amplitude Vo there arises a com­
ponent of the potential changing with twice that fre­
quency and a shift in the constant potential ll.U occurs 
with 

!!.U = 'l'(w)!!.J2. (19) 

Equation (19) is the definition of the quantiy If ( w). 
When there is no constant current the second terms 

in the braces in (18) vanishes and the first one changes 
to the resistance corresponding to the equilibrium 
state. As a result (18) changes, as it should do, to the 
Nyquist formula.C 12J We find from (18) that the effec­
tive noise temperature [l3 J is determined by the rela­
tion 

E(T eff, w) = E(T, w){r(w) +J'l'(w)} /r(w). {18a) 

Moreover, assuming that the distribution function has 
the form (5) we find according to Eq. (lla) ofC 13 J that 
Teff = T. This difference between Eq. (18a) and Eq. 
(lla) ofC 13 J is a consequence of the non-linear charac­
ter of the interaction of the system with the signal 
generator. 

4. We consider a simple example. It is well knownL 9J 
that a diode made from a semiconductor such as 
germanium with a sufficiently large diffusion length of 
the minority carriers under well-known limitations has 
a current-voltage characteristic 

1 = lo{exp (eoU / kT) - 1}, (20) 

where I0 is a parameter, eo the electronic charge 
( e 0 > 0), U the potential, and I the current. When ob­
taining (20) we assumed that the electrons and holes in 
the region of the space charge (even though there is an 
electrical current passing through the sample) are 
distributed according to the Boltzmann law but taking 
into account the applied voltage. This means that when 
the current passes through the diode it changes into a 
quasi-equilibrium condition and we can thus use Eq. 
(18). Under the same conditions under which we ob­
tained the characteristic (20) it turns out that 

(21) 

where Z ( w) is the impedance of the p-n junction at 
frequency w. For the level of the fluctuation current 
we can according to (18) write 

JT2 = ~/IZ(w) I'= 4E(T,w) {g(w)+l'l'(w)/!Z(w) !'}, {22) 

where g ( w) is the conductance at frequency w. Using 
Eq. (21) for if ( w) we get instead of (22) (neglecting the 
fact that Planck's constant is finite) 

JT2 = 4kTg(w)- 2eof. (23) 

If the frequency w is much lower than the frequency of 
generation and recombination of the electrons and holes 
we can use the current-voltage characteristic (20) to 
calculate the conductivity g ( w). As a result we get an 
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expression for the level of the thermal fluctuation 
currents 

I;= 2eoloexp(eoU /kT) + 2eolo, 

which has often been obtained before ls, 14 ] by a formal 
application of the Schottky formula for shot noise for 
currents Io exp ( eoU/kT) and Io the difference between 
which gives the resulting current passing through the 
diode. 

We note that Eq. (23) is exactly the same as van der 
Ziel's Eq. (8.10a) fromC 9J, obtained for p-n junctions 
by including the Schottky formula for shot noise. 

If we assume that we can use Eq. (16) to calculate 
the level of the fluctuating current if we understand by 
t.P the average value of the power additionally dissi­
pated in the system when the steady potential is con­
stant, we get using the actual form (20) of the current­
voltage characteristic 

JT2 = 4eolo exp (e0U / kT) {1 + e0U / 2kT}. 

When U = - 2kT/ eo the average value of the square of 
the fluctuating current vanishes and when U < - 2kT/ eo 
this value becomes even negative. From this actual 
example of a semiconductor diode it is clear that the 
noise level is determined by the coefficient of the addi-· 
tional power corresponding to the regime of a constant 
steady current. 

5. The quantities r ( w) and lj! ( w) can be evaluated 
directly from the responses in the first and second 
order of smallness. We can use (13) to write the change 
in the potential in first order in the small quantity V0 

in the form 

t'>.L <1> = <(i!!fl [Q, H])< 1l = (inf' ([(J'-!- D.FQ', 11°- D.FR])<1l 

= <~o ><1>- D.F unr' <rQ", RJ> 

= (ittp j dt1D.F (!1) ([R (11), i.}' (t)]) + D.F (ittr' ([li (0}, Q0 (0)]). 

After standard transformations we get for the magni­
tude of the impedance from (24) 

0 

Z (w) = (ih)-1 Sp{ pO 5"' dt3 e''' eiwt (R(ts), QO(O))} 

+(ih)-1 Sp {p0 [R(O),QO(O)]}. (25•) 

We have thus for the resistive component of the im­
pedance 

0 

r(w) = (ilz)-1 ~ dt3 e''' cos wt3 ([R (13), Q0 (0)]) + (ih)-1 ([R(O), Q'(O)]). 

(26) 

For the second order response, taking the quadratic 
term in (4) into account we can write [aJ 

t ,, 

(B)<'l = (ih)-2 \ dt 1 \ dt2 L1F(t1)L1F(t2 ) ([R(t2), [R(t1), B(t)]]) 

t 

+(ilz)-1 ~ dt1 11F(t1)/1F(t1)([S(t1),B(t)j), (27) 

where B is an arbitrary operator. For the second 
order change in the potential we have 

/1U<'l = (ih)-1([Q0 + LlFQ' + 1/,!1F'Q', Ji0 - L1FR- 11F'Sj)<2l 

= ( Qo)<'l + L1F( Q')<tl _ L1F ( i1z) -t( [ Qo, R] )<1l 

- L1F'(ih}-'<[Q', RJ>- 11F'(i/i)-1([Q0, S]>. (28) 

To evaluate ( i:t) <2> we must use Eq. (27) and to 
evaluate ( Q') <1> and ([ Q0, R]) <I> we must use Eq. 
(13). After standard transformations and averaging 
over the time t we get 

'l'(w) = !1U<'l/ L1F' = (ih)-1 ([R(O), Q' (O)D 

+(ih)-1 ~ dt3 e'1•coswt2 ([R(t3),Q'(O)]>. (29) 

From a macroscopic consideration it follows that the 
magnitude of the additionally dissipated power is de­
termined by the expression 

L1P = 1/, ll02 {r(w} + F0'¥ (w}}. (30) 

Substituting into (30) the expression for the resistivity 
(26) and the non-trivial part of the rectification ~ ( w) 
from (29) we are led to the magnitude of the power 
which is exactly the same as (15). 

The magnitude of the rectification in the equilibrium 
state <Po is obtained from (29) by the simple substitu­
tion R- Qo, Q0 - Qo; S- Q1, Q'- Ql where Qo and 
Q1 are the coefficients in the expansion (2). As a result 
we get 

0 

'l'o(w) =(in) - 1 ([Qo, Qt])o +(ill) - 1 ~ dt, cos wt3 ([Qo(13}, 01 (0) ])0• (31) 

It is clear from (31) that systems with an interac­
tion (with a signal generator) which is non-linear in 
the force exhibit, in contrast to systems with linear 
interactions [7 J, rectifying properties. 
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