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The problem of mass extraction from a spherical droplet of small radius fal-
ling under the action of gravity in a liquid medlum was considered in [1].
It was assumed thereln that the rate of extractlon was limited by convective
diffusion through the external medium, and the Peclet number for the external
medium was small, so that the major change In the concentration occurred in
the diffusion boundary layer in the neighborhood of the surface of the drop-
let. A similar problem was treated by Canadian authors [2 and 3], who made
a trilal-and-error calculation of the effect of the hydrodynamic flows Inside
and outslide the droplet on the rate of mass transport. The difference between
the latter papers and the paper [1] consisted on the one hand, in the use of
an integral form of the expression for the stream function obtained by Hada-
mard [u? and Rybczynski [5], and on the other hand, in a conslderably less
exact solution of the equation of convective diffusion by trylng various
polynomial expresslons for the concentration profile. The effect of convec~
tive transport on the rate of depletion of the solute within the falling
droplet was investigated 1n a paper by Kronlg and Brink [6] for the situation
where the slow stage of the process was diffusion through the droplet. For
estimating the maximum effect of the circulatory motion of the liquid within
the droplet, the authors simplified the equation of mass transport, assuming
that the concentration of solute within the droplet remained constant along
each streamline, As shown by an estimate made by these same authors, such
an assumption is certainly not satlsfied near the surface of the droplet, so
that the results obtained in [6) may not be applicable for large Peclet num-
bers, when the maln resistance to mass transfer is concentrated in the dif-
fuslon boundary layer.

The problem of convective diffusion of mass from a single droplet moving
in a liquid medium at small Reynolds numbers 1is considered herein, under the
assumption that the Peclet numbers correspondling to the disperce {interior
of the drop) and dense phases are very large and that the resistances of
each of the phases to mass transfer are comparable. The problem is solved
in the quasi~steady approximation, 1.e. under the assumption that the relaxa-
tion time of the diffusion boundary layer 1s small in comparison with the
time for a significant depletion of the solute in the droplet. The Polncaré-
Lighthill-Kuo method 1s used to obtain the first two terms of the expanslons
of the mass-concentration functions for the interior and exterior regions in
powers of certain parameters corresonding to these regions which are assumed
to be of the same order of smallness. Expressions for the mass flux through
the surface of the droplet and for the mean mass-transfer coefficlents for
each phase are found from the solutlons obtalned. One of the orlginal assump-
tions of the problem was that there is Interphase equilibrium expressed by
Henry's law at the surface of the droplet, hence the total resistance to
mass transfer (i.e. the reciprocal of the overall mass-transfer coefficlent)
was found to be equal to the sum of the resistances of each of the phases.
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We shall consider a spherical droplet of sufficlently small radius 7
containing solute and moving with a constant velocity ¢ 1in a liquid medium.
Let p, and p, be, respectively, the mass-diffusion coefficients inside and
outside the droplet. If the Peclet numbers p,= UR/D, and P,=UR/D, are
sufficlently large, then the main resistance to mass transfer from the drop-
let will be concentrated in a thin layer called the diffusion boundary layer,
which will be located on both sides of the surface of the droplet. It may
be shown that for given values of the mass concentrations at the edges of
the diffuslon layer, the relaxation time of the latter, that 1s the time
during which a steady distribution of concentration is established in the

diffusion layer, is R(L4+p) i

= k=)
where y 1s the ratio of the dynamic viscosltles of the disperse and dense
liquid phases. In [6] it was shown that the time «r, during which the total
quantity of solute in the drop decreases by the factor e 1s bounded below
by the quantity 0.0228%/D, .

Ty =

Consequently, we have the relation
1
<23 +"

which shows that at sufficlently large Peclet numbers p, there exists a
sufficiently long interval of time ¢ satlsfylng the condition r, <t x 7,.
During this interval of time the mass transfer in the diffusion boundary
layer may be descrlibed by the steady-state equation of convectlve diffusion
for prescribed values of the concentrations at the edges of the boundary
layer equal to the 1nitial values of the concentrations inside and outsilde
the drop. In this case the problem reduces to finding the solution of the
system

vr(l) 6c1 Vo(” acl
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where ZSrJ 1s the Laplace operator in spherilcal coordinates, r 1s the
distance from the origin expressed in units of the droplet radius, and a
is the polar angle. If the origin 1s located at the center of the droplet,
the polar axis directed vertically upwards, and the falling of the droplet
at small Reynolds numbers under the action of gravity is considered, then,
as shown in [4 and 5], the hydrodynamic velocity distributions within and
outside the droplet will have respectively the following forms:

U@l —r?)cosb U (1 — 2r?) sin 6
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As noted above, in the interval of time under consideration (¢ <& ta),
the mass concentration in the interlor of the droplet (at the edge of the
diffusion boundary layer) may be treated as constant and equal to the initial

value ¢, o (r<€1,0) =cy (4)

We will also assume that the mass concentration in the continuous medium
at a large distance from the droplet is given

¢ (r>1,8) = g0 6)
On the surface of the droplet the mass flux must be continnous
Oc de
Dy G- (1,0) =D, 5> (1, 6) (6)

Moreover, 1t may be assumed that owing to the large rates of physilcal
diffusion at the interface, equilibrium between phases 1s established instan-
taneously. For sufficliently small cbncentrations of the extracted substance,
such a situation 1is described by Henry's law

¢ (1, 8) = ac, (1, 0) Q)
where o 1s a coefficient depending on the temperature and pressure,

The Poincaré-Lighthill-Kuo method [7 to 11], which has found very wide
and effective application in various problems of hydrodynamics, heat and
mass transfer in recent years, will be used in the solution of the present
problem, This method is a combination of Prandtl's boundary layer method
of modifylng perturbation theory due to Poilncaré and Lighthill, in which
the series expansion in powers of a small parameter is appliled not only to
the sought-for function, but also to the independent varlable. The main
advantage of this method 1s that it avoids an increase in the order of the
singularity in the solutions corresponding to higher approximations, and 1t
thereby eliminates divergence of integrals of quantitles obtalned from these
solutions.

We shall choose for expansion parameters corresponding to the disperse

and dense phases the 7uantities

h=VA+w: Py fi=VU+wIP, ®)
and we shall assume that these quantilties are of the same order of smallness,
It is easily seen that the condition f; <€ 1 ensures the fulfillment of
the lnequality T, <€ T4, which was already used in formulating the basic
equations (1) of the diffusion boundary layer.

We write the expansions for the quantities ¢, and r as power series 1n
the parameters (¢ =1, 2), retalning first-order terms

a = ¢ + fic + .., r=14fip+... 9)

Substituting these expansions into Equation (1) and the boundary condi-
tions (4) to (7), we obtain for ¢;® the system oe egquations

dc;(0) 1 — w2 Ol = a9

dp 2 ov op?

=0 (10)

with boundary conditions
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¢, (— o0, v) = C100 c,® (OO, v) = Cao0 (11)
(0) ——Jcal®)
cl(o) (O’ 'V) = (162(0) (O, ‘V), achp— (09 ’V) = Vﬂ % (0’ 'V) ('V = cos 0)
It is not difficult to show that this system has the solution (12)

v ~1/,

oW = Ajerfy + B; (=12, % (p, v) =p(1 —+? [8 S (1— =z dx]

—1

VBlew — acy o) €10 — ACqo
Ay = — — , Ag o= — — B
' a+ VB ? at VB
o (clo+ V Be.,. ) e -+ VE-C
B, = =B, By= ———2 13
' a+ VB : «+ VB (13)

If the system of equations for q(l) were now written down, then the cor-
rection to the expression for the local mass flux at the interface obtained
by solving this system would have singularities at v = + 1 , leading to
divergence of the mass=-flux integral. To avold this difficulty we introduce
the coordinate transformation

p==8 v=n+fig&mn) (14)

selecting the functions ¢, (e, n) in such a way that the correction to the
local flux at the 1nterface, calculated to first order in the parameters p,,
will not contain undesirable singularities., It 1s obvious that the change
of variables from p, v to £, n as defined in Equations (14) can alter
only the equations for ¢;{l), The solution for ¢;® , however, will as before
be given by Formulas {(12) and (13) within the accuracy of the substitution
(D: V) ind (gx ﬂ)'
Introducing the change of coordinates (14) into Equations (1) and substi-
tuting the expansion (9), we obtain the system (15)
dc (1) 2 dc;(1) d%c. (1) 2 dc,; (0)
i 1— 1
gy T A T (2 — e — B k)
3 2 on BE 2 3¢
dg, ] Jc; (0) ag; 0%;lo)

(et %)+ 157 (5~ ) — T ) — 2% Ty oo

with boundary conditions

M (— o0, m) = ¢® (00, m) =0, @ (0,1) =aVPe,®(0,7)
dc,(1) dcsl1)
TF,—(O’ n):B‘gg‘(O, "l) (h1=k1:—‘1, hizsp"—'zv kg_—;p.) (16)

We also introduce new variables §y and +t by Formulas
n
2
b=t—w) t=2{0-—sdz=F@-—mA+n ()
—1
Transforming Equation (15) to the variables (17) and substituting Expres-
sions (12) and (13) for the functions ¢;®, we obtain an equation similar to
the equation of heat gonduction with sources



390 V.P. Vorotilin, V.S. Krylov and V.G. Levich
(18)
; 1) 2 — h,
i Baw A'_e-wu{ Ok — k) e [n 4 A
o W T YV T=T Z0—wp ~ Tl T T
3 Y2k, : a— .,]z)z 0%, og; 9 Y2 dg;
i o [+ R [ - T S )]}
We choose the functions ¢,(y, n) so that the terms on the right-hand side

of Equation (18) having strong singularities at the points 7 = + 1 will
vanish. For thils purpose 1t 1s necessary to set

¥n (6k; — hy)
g (b, M =—gqm (19)

for which Equation (18) takes the form (20)

de, () G, (1) 24,
o W Vard—w)

n A—mipy 1 2n n(6k; —hy) { (1 — nz)ﬂ] .
+1+ns+ 2t (1_;.,]2"1"7)]4— TF An—{— T }(t=1,2)

where the function n(r) 1s determined by the relation (17).

P26k, — hy) [ 302

RTI 3 ¢ .
et + Sk — e [+

It 1is necessary to add stl1ll another condition inorder to obtain the solu-~
tion of Equation (20) with the boundary conditions (16). For thls we may
require (1] that the mass concentration at the stagnation point (1 = 0) be
equal to the value of the concentration far from the droplet, i.e. ¢,

Thus Equation (20) must be solved with boundary conditions

6 (= 00, 1) = ¢ (00, T) = 0, ¢,V (, 0) = ¢, (p, 0) =0

ac1 (21)

@ 0, 1) = a Ve, (0, 1), 0, 1) = ﬁ eyl )(O 9

We willl seek the solution in the form of a sum
a® = Y0 4. Y@ (i=1,2) (22)

We require that the functions Y;1 (Y, T} satisfy Equation (20) with zero
initial conditions. Then, as is known

1o 0,9 =~ et oxp [ (] o 8 as

Y, (9, 1) =

(= X ]

I I = P

Here each of the functlons F, (0, T) 1s the corresponding right-hand side

of Equation (20).

The functions Y@ (3, T) must satisfy the homogeneous heat-conduction
equation with boundary conditions
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Yl(s) (.... oo, 1) = 0, YQ(S) (oo, 1,-) =0, Yl(z) (q,, 0) =0, Y’(t) (1';, O) =0

(24)
Y,® (0, v) = a VB Y@ (0, v) (25)

ayl( 2 ay, {0 Pi@ 9) + BFs (2, 9) _ @
55 0 — 850, 9 = || Bz e o 4(,_,,)]%!;

The expressions for the functions Y@ (0, T) , taking account of the
boundary conditions (24), may by means of Duhamel's integral be represented
in the form

T

[ aY? d
Y. (0, 7) = [ L ] y
@ 0.9 § #® Je0 Var—y)
Y,® (0, 7) = _i[‘”"m] A 27)
’ gL o Je= Va(w—7)
Using the boundary condition (25), we obtain
¢ 0Y,® Y,
- —t, 1 2 —
Je—y ([Zr], . +ave[®l] Jay=0 @3
=Y T=Y
Hence 1t follows that
9y, = [0Y,® _
[ o ]¢=o +aVB [ £ ]q,___o_ 0 (29
Solving Equations (29) and (26) simultaneously, we find expressions for
the derivatives (30)

e
A Vi

[ayl(ﬂ) ]

o dg=o

Y2 ® Fi(z, ¥) 4 BFa (=, y) G

[ oy ]¢=0 - B+ a VB Vin(x — yp v eXp[— 4k("_y)]‘dxdy

The mass flux at a given point of the surface .of the droplet 1s determined
by Expression

D; 0cy ac;(0)
](V) — R ar 1, v) = f (1—'\’2)[ ]¢_0

Yy, 0Y,;2)
)

Here the derivatives [3c;(® / O] gy, [0/ O] 4o, [0Y @ / O] 4o
will be known functions of the varlable ¢ = 7(n). According to (19) the
function ¢, (¥, n) , which determines the angle transformation, vanishes on
the surface of the drop, 1.e. for § = 0 , hence for the inverse transfor-
mation from the variable <{(n) to the variable y 1in Formula (31), it

(31)
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suffices to replace 7n 'by v 1n all of the functions. The total mass flcw

through the surface of the droplet equals (32)
1
. 2RDs (c10 — a6,y,) 8Py \': !

= 2 = 2% L . — ]
I'=2aR _Sl J ) v “t VB {Excamy Y J
where (33)

_ o+ VB 2 a VBF:(z, y) — F1(2.y)
I = 2R S (1 — v?) dv S K o zexp| — == y)]dxdy

—1 00
The relation t(v) 1s determined-by (17). As aresult of some calculations
Formula (32) takes the form

(34)

I — 2RD; (c10 — acyy,) ( 8nP; )*/, 55 —a(3.8+1.7n)
at+ VB ST +w at VB

The initial assumptions that the quantities 7, and ¢, were small and of
the same order do not allow the use of Formula (34) over a wilde range of the
parameters appearing in it. We note, however, that in the limiting case
D, - oo (ﬁ —» (), when the rate of mass transfer 1s limited by the external
medium, considering the interval of time to be small in comparison with the
time of depletion of the drop, the mass concentration at the surface of the
droplet can be considered as fixed at the value ¢, . In this case the prob-
lem reduces to the solution of the second equation of (1) alone, which does
not contalin the parameter 8 , and the expression for the mass flow takes

the form 1,
I = 28D, (ew— o) {(5ig) —17U+W | 69

Expression (35) 1s the formula of Levich [1] taking into account subse~
quent nonvanishing terms in the expansion for the concentration ¢, in powers
of the parameter f, . It should, however, be noted that the maln advantage
of Formula (34%) over Levich's formula, besides the fact that it 1s applicable
to a wider range of Peclet numbers, is that it explicitly accounts {through
a) for the dependence of the flow I on the physical properties of the con-
tiguous phases, and that there are no restrictions on the absolute value of
the coefflcient o appearing in this formula.

Formula (34) determines the overall mass transfer coefficlent

I
4t R? (Cm — aczoo)
The partial mess transfer coefficlents k), and k, corresponding to each
phase are defined by the relations

K, = —E{RT[CI" —-—%— g ¢ (1, v) a!v:l'1

K =

1

K, =Zﬂ’ﬁ-[;—1 S cl(i,v)dv——czoo]_l (36)

—1
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where the function o,(1, v), which is the value of the concentration o, on
the surface of the droplet, has, according to Formulas (12). (13), (22), (23)
(27) and (30) for ¥, the following form:

T(v)

Y oo
_a {c10}- V‘Ecaoo) afy Fy(z,0)4-BFy(x, C)x
a(l, v = ot V5 2,‘;(1_*_]/[?) S Vt—y§§ (v — o)
X z exp[ 7 (y ;) ]dx dg 37
Substituting this expression into Formulas (36), we obtain
_ I @+ VB 1 @ L+ p\h (38)
Kl — 43‘R2 VB_(CIO - aczw) [ + a+ VB ( Pl ) ﬂ]
1@+ VB) R N (A A
Ka = 7575 (o — acgey) [1 a+ VB ( P, ) ’]
Here
_ 1 (V) v %
_ _ o+ VB d o\ [Fi(z, D)+
I = 4 VB (o0 — aeyo) S Y S Vr—y § (y—C)” OS 3
+ BF, (=, Q]xexp[—-ZTEjia—]dx (39)
Calculation leads to the followlng result:
I, =49424 VB +p (40)

By comparison of Formulas (3.8) with the expression for the overall coef-
ficlent X , i1t 1is easlily seen that under the conditions of the present prob-
lem the law of addition of the resistances of the phases is valid

1/K = 1/K1 +a/K:

This conclusion is a direct consequence of the linear character of the
condition of interphase equilibrium (7) used above. For a nonlinear condi-
tion, however, the relation between the coefficlents X,, ¥, and X can be
obtained only as a result of the correct solutlcn of the corresponding prob-
lem of the distribution of concentrations. At the present time analytical
methods for solving such a problem are lacking.

In conclusion the authors express their deep gratitude to A.M. Rozen for
a very helpful discussion concerning the results obtalned.
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