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The problem of mass extraction from a spherical droplet of small radius fal- 
ling under the action of gravity in a liquid medium was considered In Cl]. 
It was assumed therein that the rate of extraction was limited by convective 
diffusion through the external medium , and the Peclet number for the external 
medium was small, so that the major change In the concentration occurred in 
the diffusion boundary layer In the neighborhood of the surface of the drop- 
let. A similar problem was treated by Canadian authors [2 and 31, who made 
a trial-and-error calculation of the effect of the hydrodynamic flows Inside 
and outside the droplet on the rate of mass transport. The difference between 
the latter papers and the paper [l] consisted on the one hand, In the use of 
an inte 
mard [4 7 

ral form of the expression for the stream function obtained by Hada- 
and Rybczynskl [ 51, and on the other hand, In a considerably less 

exact solution of the equation of convective diffusion by trying various 
polynomial expressions for the concentration profile. The effect of convec- 
tive transport on the rate of depletion of the solute within the falling 
droplet was Investigated lna paper by Kronig and Brink [6] for the situation 
where the slow stage of the process was diffusion th,rough the droplet. For 
estimating the maximum effect of the circulatory motion of the liquid within 
the droplet, the authors simplified the equation of mass transport, assuming 
that the concentration of solute within the droplet remained constant along 
each streamline. As shown by an estimate made by these same authors, such 
.an assumption is certainly not satisfied near the surface of the droplet, so 
that the results obtained In [61 may not be applicable for large Peclet num- 
bers, when the main resistance to mass transfer Is concentrated In the dlf- 
fusion boundary layer. 

The problem of convective diffusion of mass from a single droplet moving 
In a liquid medium at small Reynolds numbers Is considered herein, under the 
assumption that the Peclet numbers corresponding to the dlsperce (interior 
of the drop) rind dense phases are very large and that the resistances Of 
each of the phases to mass transfer are comparable. The problem Is solved 
in the quasi-steady approximation, i.e. under the assumption that the relaxa- 
tion time of the diffusion boundary layer is small in comparison with the 
time for a significant depletion of the solute in the droplet. The Polncare- 
Lighthill-Kuo method is used to obtain the first two terms of the expansions 
of the mass-concentration functions for the Interior and exterior regions in 
powers of certain parameters corresonding to these regions which are assumed 
to be of the same order of smallness. Expressions for the mass flux through 
the surface of the droulet and for the mean mass-transfer coefficients for 
each phase are found from the solutions obtained. One of the orlglnalassump- 
tlons of the problem was that there Is Interphase equilibrium expressed by 
Henry's law at the surface of the droplet, hence the total resistance to 
mass transfer (i.e. the reciprocal of the overall mass-transfer coefficient) 
was found to be equal to the sum of the resistances of each of the phases. 
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We shall consider a spherical droplet of sufficiently small radius R 

containing solute and moving with a constant velocity U in a liquid medium. 

Let D, and Da be, respectively, the mass-diffusion coefficients Inside and 

outside the droplet. If the Peclet numbers pl= UR/D1 and pz=UF?/Da are 

sufficiently large, then the main resistance to mass transfer from the drop- 

let will be concentrated in a thin layer called the diffusion boundary layer, 

which will be located on both sides of the surface of the droplet. It may 

be shown that for given values of the mass concentrations at the edges of 

the diffusion layer, the relaxation time of the latter, that Is the time 

during which a steady distribution of concentration Is established In the 

diffusion layer, is 
z _ R (1 + ~1 
r- 2u ( 

p=; 
) 

where u is the ratio of the dynamic viscosities of the disperse and dense 

liquid phases. In C63 It was shown that the time 76 during which the total 

quantity of solute In the drop decreases by the factor c Is bounded below 

by the quantity C.C22Ra/D,. 

Consequently, we have the relation 

which shows that at sufficiently large Peclet numbers p, there exists a 

sufficiently long interval of time t satisfying the condition r,(Tt cr: TV. 

During this Interval of time the mass transfer In the diffusion boundary 

layer may be described by the steady-state equation of convective diffusion 

for prescribed values of the concentrations at the edges of the boundary 

layer equal to the initial values of the concentrations Inside and outside 

the drop. In this case the problem reduces to finding the solution of the 

system 

where &JI is the Laplace operator in spherical coordinates, r Is the 

distance from the origin expressed In units of the droplet radius, and Q 

Is the polar angle. If the origin Is located at the center of the droplet, 

the polar axis directed vertically upwards, and the falling of the droplet 

at small Reynolds numbers under the action of gravity Is considered, then, 

as shown In [4 and 53, the hydrodynamic velocity distributions within and 

outside the droplet will have respectively the following forms: 

q.(l) = - 
U (1 - r2) cos 0 

2(1 + i4 ' 
ve(U = U (1 - 2r2) sin 0 

2 (1 + i4 (2) 

v,(a) = 
u(l 

-$_t&)COS8, Q(s) = u (- 1 + + + 4$)sin 8 (3) 

( 
2 + 3p 

c=3(1+i.L)* 
A 

b=1+p ) 
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As noted above, In the Interval of time under consideration (I 4 rd) ’ 
the mass concentration In the Interior of the droplet (at the edge of the 

diffusion boundary layer) may be treated as constant and equal to the initial 

value Cl0 
Cl (r < 1, 0) = Cl0 id) 

We will also assume that the mass concentration In the continuous medium 

at a large distance from the droplet is given 

On the surface of the droplet the mass flux must be continuous 

D, g (1, e> = D, -g- (1, 0) 

Moreover, it may be assumed that owing to the large rates of physical 

diffusion at the Interface, equlllbrlum between phases Is established lnstan- 

taneously. For sufficiently small concentrations of the extracted substance, 

such a situation is described by Henry's law 

cl (I, e) = UC, (I, 0) (7) 

where c Is a coefficient depending on the temperature and pressure. 

The Polncare-Llghthlll-Kuo method [7 to 113, which has found very wide 
and effective application In various problems of hydrodynamics, he&t and 
mass transfer In recent years, will be used In the solution of the present 
problem. This method is a combination of Prandtl's boundary layer method 
of modifying perturbation theory.due to Poincare and Lighthill, In which 
the series expansion in powers of a small parameter is applied not only to 
the sought-for function, but also to the independent variable. The main 
advantage of this method is that it avoids an increase in the order of the 
singularity In the solutions corresponding to higher approximations, and It 
thereby eliminates divergence of Integrals of quantities obtained from these 
solutions. 

We shall choose for expansion parameters corresponding to the disperse 

and dense phases the quantities 

fl = V-/i1 + p) II FP,, f?, = Y (1 + PL) 1p.a (8) 

and we shall assume that these quantities are of the same order of smallness. 

It Is easily seen that the condition fl < 1 ensures the fulfillment of 

the Inequality rr < rd, which was already used In formulating the basic 

equations (1) of the diffusion boundary layer. 

We write the expansions for the quantities o, and r as power series in 

the parameters J'! (t = 1, 2) , retaining first-order terms 

Cj = q(O) + fiCi'l) + e m -9 ?-=1$-f@+... 

Substituting these expansions into Equation (1) and the boundary condl- 

tlons (4) to (7), we obtain for Ci(O) the system oe equations 

acp 1 _ +? ac,co, - aq 
-- 

@bp+a av--= 3P2 
0 (10) 

with boundary conditions 
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Cl(O) (- 00, v) 

cl(O) (0, v) = at,(O) (0, v), 
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It Is not difficult to show that this system has the solution (12) 
-'I, 

~$0) = Ai erf x + Bi (i = f,Q, x (p, Y) = p (1 - Y’) [8 i (1 - zz) d”3 
-1 

Al = - 
VRCIO - acnoo) 

a+m ’ 
AZ = _ ‘lo - %m 

a+ V/p 

B1 = a b” + ~%~) Ba = 
Cl0 + maa, 

a+V/p ’ a+ VP 

If the system of equations for t.+(l) were now written down, then the cor- 

rection to the expression for the local mass flux at the Interface obtained 

by solving this system would have slngularltles at v - f 1 , leading to 

divergence of the mass-flux Integral. To avoid this difficulty we Introduce 

the coordinate transformation 

P = E, V = rl + figi (%9 tl) (14) 

selecting the functions g,(~, n) In such a way thatthecorrectlon to the 

local flux at the Interface, calculated to first order In the parameters f,, 

will not contain undesirable slngularltles. It Is obvious that the change 

of variables from P, v to f, n as defined In Equations (14) can alter 

only the equations for Cii'). The solution for C&O) , however, will as before 

be given by Formulas (12) and (13) within the accuracy of the substitution 

(P, V) - (CJ n). 

Introducing the change of coordinates (14) into Equations (1) and substl- 

tutlng the expansion (g), we obtain the system (15) 

%11 
i%*(l) ---+TY _E&(2-%gt-!#$!+ 

+ [q(gi + %aF!)+k$!f(!! -334) _ $]!$?-2f$z (i=1,2) 

with boundary conditions 

Cl(l) (- 00, Tj) = c&l) (oo,q) = 0, cl(l) (0, q) = a VFG2f1) (0, q) 

ac,c1, 

+o, q) = $$(o, q) @I= kl= 1, hr = Sp - 2, ks =P) (16) 

We also Introduce new variables $ and 7 by Formulas 

* = % (1 - Y2), Z= 2 5 (1 - 3) dz = + (2 - rl) (1 + tl)” (17) 
-1 

Transforming Equation (15) to the variables (17) and substituting Expres- 

sions (12) and (13) for the functions q(c), we obtain an equation similar to 

the equation of heat conduction with sources 
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(18) 
a+ (1) a%* (1) Ai 
-- 
ar 

7 = I/nt e-*'ias 
{ 

2+ 

$9 (6'i - hi) $gi 
1-_ 

2 (1 - Tfy --[-11+&]4- l--S z 

We choose the functions Q,($, n) so that the terms on the right-hand side 

of Equation (18) having strong singularities at the points n=*l will 

vanish. For this purpose It is necessary to set 

t!f (91 rl) = 
9~ (64 -- hi) 

2 (1 + r12) (19) 

for which Equation (18) takes the form 

act (1) a~+) 
ar--= w2 

-tL 
1 +rls 

+ (I - qz)2 
2t ( 

where the function n(7) is determined by the relation (17). 

It is necessary to add still another conditloninorder to obtain the solu- 

tion of Equation (20) with the boundary conditions (16). For this we may 

require[l] that the mass concentration at the stagnation point (7 = 0) be 

equal to the value of the concentration far from the droplet, i.e. c2_ 

Thus Equation (20) must be solved with boundary conditions 

Cl(l) (- 00, z) = c&l) (00, z) = 0, Q(l) ($,, 0) = CJl) ($, 0) = 0 

c,(l) (0, z) = a JqLp (C/, T), ag (0, z) = p cg (0, z) 
(21) 

We will seek the solution in the form of a sum 

c*(l) = yp + yiw (i = 1, 2) (22) 

We require that the functions Yi”‘($, ‘C) satisfy Equation (20) with zero 

initial conditions. Then, as is known 

Y,(l) (9, z) = -(y 
00 

y;“,,{exp[- &--g- exp[-&!--;)]}dsdy 

(23) 

Here each of the functions F,(cp, 7) is the corresponding right-hand side 

of Equation (20). 

The functions pi") (9, Z) must satisfy the homogeneous heat-conduction 

equation with boundary conditions 
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Yp (- 00, IF) = 0, Y*(S) (00, z) = 0, Yp ($7, 0) = 0, Y,(‘) (9, 0) =o 
(24) 

Y,ca) (0, z) = a JqI Y,c@ (0, z) (25) 

Fl (z Y) + PFa (xv Y) x 

j4n(T_y).q 
X= 

exp -- dxdy 
1 

00 
4(r--Y) (26) 

The expressions for the functions Y*(a) (0, z) , taking account of the 
boundary conditions (24), may by means of Duhamel's integral be represented 

in the form 

YP (0, r) = 5 [a$]*=o v/n F_ y) 

7=y 

YP (0, r) = -i [y]*zo vnF_y) 
0 +=v 

Using the boundary condition (25), we obtain 

Hence it follows that 

(27) 

Solving Equations (29) and (26) simultaneously, we find expressions for 

the derivatives (30) 

aY,(a) c 1 a ss ’ w FI (2, Y) + PFs @A Y) x exp _ 

[ 
xa 

aql = 4-O a+ v/p If4n (z - Y)8 4 (r- Y) 1 
dx dy 

00 

1 + w FI (2, Y) + PFa (r, Y) z exp _ 

ss [ 

9 
I+0 = - P+am O. f4Jc (z - Y)* 4 0 - Y) 1 dx dy 

The mass flux at a given point of the surface-of the droplet Is determined 

by Expression 

i(v) = 
II+ ac, 

- 7i__aT(l, v) = -~(l-vv")[~]bo- 

_$(I -v$!y+a~]84 (30 

Here the derivatives [&$c) / &#I,+,, [Wi" / agl l+o, [c?YP’ / atpl +=o 
will be known functions of the variable 7 - 7(T))* According to (19) the 

function Q,(s, ?) , which determines the angle transformation, vanishes on 

the surface of the drop, I.e. for ) I 0 , hence for the lnveree transfor- 

mation from the variable T(1) to the variable v In Formula (31), it 
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suffices to replace TJ 'by v In all of the functions. The total mass flew 

through the surface of the droplet equals (32) 
1 

I = 2nRa 
s 

i (v) dv = 
2RDs (~10 - aczoo) 

it 
8nPa ‘I2 

1 
I - I 

-1 a+ VP 3(l+lr) a+f/p l 1 

where 

The relation T(V) Is determined-by (17). As aresult of some calculations 

Formula (32) takes the form 

I= 

The Initial assumptions that the quantities .I1 and .Tz were small and of 

the same order do not allow the use of Formula (34) over a wide range of the 

parameters appearing In it. We note, however, that In the llmltlng case 

D, - BJ (B - 0 when the rate of mass transfer Is limited by the external 

medium, considering the Interval of time to be small In comparison with the 

time of depletjon of the drop, the mass concentration at the surface of the 

dioplet can be considered as fixed at the value cl0 . In this case the prob- 

lem reduces to the solution of the second equation of (1) alone, which does 

not contain the parameter 0 , and the expression for the mass flow takes 

the form 

I = 2RD, (Cl0 - cgoo 3 ,":~,,)'"- 1.7 (1 + p) } (35) 

Expression (35) Is the formula of Levlch [l] taking Into account subse- 

quent nonvanlshlng terms In the expansion for the concentration ca In powers 

of the parameter fa . It should, however, be noted that the main advantage 

of Formula (34) over Levlch's formula, besides the fact that It Is applicable 

to a wider range of Peclet numbers, Is that it explicitly accounts (through 

a) for the dependence of the flow I on the physical properties of the con- 

tiguous phases, and that there are no restrictions on the absolute value of 

the coefficient Q appearing In this formula. 

Formula (34) determines the overall mass transfer coefficient 

K= 
I 

4fiRa(c10-UC,,) 

The partial mass transfer coefficients K, and ~~ corresponding to each 

phase are defined by the relations 
1 

K, = &[cIo -+ \ c1 (1, Y) &l-l 

-1 

G=&-[&\ c,(l ,Y)dV-- c,, 1 -l -1 (36) 
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where the function cI (1, v), which 1s the value of the concentration c, on 

the surface of the droplet, has, according to Formulas (12). (13), (22), (23h 

(27) and (30) for r, the following form: 

Cl(1, 4 = 
a @IO+ V/pea,) + 

T(V) 
Zfl 

s 

dy YOOFIM)+Pw* a)( 

a+VT 
ss 2n(z+ VP) o VT-Y o. (Y - L-P’ 

(37) 

Substituting this expression Into Formulas (36), we obtain 

K1 = Z (a+ VFI (38) 
4nRa ~/P(cuI - acam) 

KS = 
Z(a+VB) 

4nRa (cl0 - cu.& C 

Here 
1 +(4 11 

I, = - a+W s s dy 4 * 
4nJfP (cl0 - acam) _-l 

dv - s s o VT - Y o (Y - U’/’ o 
[Fl (? Cl + 

Calculation leads to the following result: 

12 = 4.9 + 2.4 v/B (1 + p) (40) 

By comparison of Formulas (3.8) with the expression for the overall coef- 

ficient K , It Is easily seen that under the conditions of the present prob- 

lem the law of addition of the resistances of the phases Is valid 

l/K = 1lK1 +alKz 

This conclusion Is a direct consequence of the linear character of the 

condition of Interphase equlllbrlum (7) used above. For a nonlinear condl- 

tlon, however, the relation between the coefficients K,, Ka and K can be 

obtained only as a result of the correct solution o f the corresponding prob- 

lem of the distribution of concentrations. At the present time analytical 

methods for solving such a problem are lacking. 

In concluslon,the authors express their deep gratitude to A.M. Rozen for 

a very helpful discussion concerning the results obtained. 

BIBLIOC+RAP?lY 

1. Levlch, V.G., Teorlla dlffuzlonnol klnetlkl geterogennykh khlmlchesklkh 
protsessov. III. Reaktsll, protekalushchle na granltse razdela zhld- 
kost' - gaz (Theory of diffusion kinetics of heterogeneous chemical 
processes. III. Reactions occurring at liquid - gas Interfaces ). 
Zh.flz.Khlm.,Vol.22, p.721, 1948. 



33’1 V.P. Vorotllin, V.S. Krylov and V.G. Levlcli 

2. Bowman, C.W., Ward, D.M., Johnson, A.I. and Trass, O., Mass transfer 
f&m fluid and solid spheres at low Reynolds numbers. Can.J.chem. 
Engng, Vol.39, No 1, p.9, 1961. 

3. Ward, D.M., Trass, 0. and Johnson, A.I., Mass transfer from fluid and 
solid spheres at low Reynolds numbers. 
p.164, 1962. 

Can.J.chem.Engng, Vol.40, NO 4, 

4. Hadamard, J., MBcanique. Mouvement permanent lent d'une sph&re llquide 
vlsqueuse dans un llquide visqueux. Compte rendu, Vo1.152, p.1735, 
1911. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Rybczynskl, W., Uber die fortschreltende Bewegung einer fliissigen Kugel 
in einem ztihen Medium. Bull.Acad.Sci.Cracovle A, Vo1.40, 1911. 

Kronlg, R., and Brink, J.C., On the theory of extraction from falling 
droplets. Appl.sclent.Res., A, 'Jo1.2, t&? 2, p.142, 1950. 

PolncarC, H., Les mCthodes nouvelles de la mkcanique cCleste. Vol.1, 
sec.3, Paris, 1892. 

Lighthill, M.:., A technique for rendering approximate solutions to 
physical problems uniformly valid. Phil.Mag., (7), Vo1.40,1179, 1949. 

Kuo, Y.H., On the flow of an Incompressible viscous fluid past a flat 
plate at moderate Reynolds number. J.Math.Phys., Vol.32, p.83, 1953. 

Kuo, Y.H., Viscous flow along a flat plate moving at high supersonic 
speed. J.aeronaut.Sci., v01.23, t#? 2, p.125, 1956. 

Tslen, H.S., The Poincar&Llghthill-Kuo Method. Advances In Applied 
Mechanics, H.Dryden and T. von K&rm&n, eds., Vol.IV, pp.281-349, 1959. 

Translated by F.A.L. 


