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Theory of Concentration Polarization. III

By B. Levich

Transition regime

In Parts I and IT! of this series only the steady state of current
flow through a solution has been discussed. We shall now turn to
processes occurring on closing the circuit. When the potential dif-
ference V applied to the electrodes is gradually increased, the cur-
rent first reaches its limiting value; later, at large enough values of
V, a new electrochemical process sets in, for instance, the evolution
of hydrogen. If a current, equal to the limiting current, were passed
through the solution, the potential should rise indefinitely. Actually
the potential cannot, of course, become infinite, and some new
electrochemical process sets in on the electrode. When a current,
exceeding the limiting current, is passed through the solution, the
electrode potential does not begin to rise immediately after the
circuit is closed, but only after a certain lapse of time called the
transition time. The latter is obviously the time required for the
current in the solution to reach its limiting value. It is of interest
to determine the transition time <. ;

We shall calculate it in the case of an electrode in form of a
large rotating disc, assuming a considerable amount of indifferent
electrolyte to be present in the soluton.

At the initial moment, ¢ =0, there begins to pass through the
electrode a definite current, the density j of which exceeds that of
the limiting current jyy in the given solution under the given stir-
ring conditions.-

Prior to switching-on the current, the concentration of the solu-
tion is constant and equal to ¢'. With ¢ >'0 the concentration will

! Part I, Aé¢ta Phys. Chim. URSS, 17, 257, (1942).
Part II, Acta Phys. Chim. URSS, 19, 417 (1944).
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for ¢ is found:
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We are seeking the solution of (7) forsmall values of z or, more
exactly, small 2]y Dt, for which the value v, obtained from formula
(7) Part I, Section 3, may be used.

At large values of z far from the disc, v, 1s constant, and
correspondingly ¢ is constant. At small values of z we may write
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The solution of equation (8) satisfyingthe initial and boundary
condition at the electrode, is
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Expression (9) for ¢ obviously does not satisfy theconditionat infi-
nity. This is related with the fact that the value for v, was taken
from formula (7), Part I, Section 3, which is certainly valid only for
small values of z. With z ~ ', where 8 is the diffusion layer thick-
ness, our solution should adjusted to that ‘corresponding to large
values of z. Since we are interested onlyin the value of ¢ at z=0 and.
for small time intervals, this adjusting is of smallinterest to our end,
although it can be carried out without much trouble. ,

For the concentration at the electrode surface there is found
from (9). ' ‘

ST

Expressions (9) and .(_’10) hold only for such values of t for which
the latter terms, depending upon convection, represent a small cor-
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change on account of the diffusion and the convective ion transfer
to the electrode. At the electrode surface, at z=0, the condition

j=DF (%ﬁ)z:():const (1

is satisfied.
On the electrode itself the velocity of the liquid becomes zero and
{here is no convective flow. Tn this case the equation of convective

diffusion is

ac ac d% ;
it vz =D @

where v, 1s a given function of z but not a function of time since
the rotation of the electrode is stationary®. At small values of ¢,
immediately after the current is switched on, ions from adjacent
zones of the solution, where the flow velocity v, is low, will move
towards the electrode. Therefore at small values of ¢ the substance
will be transported to the electrode mainly on account of molecular
diffusion from the adjacent zones of the solution and the convection
term in equation (2) will be small compared with the diffusion one.
Thus, for small time intervals the transfer equation may be sim-
plified by omitting the convection term, SO that
oc a9*c
at = Doz )
The solution of equation (3) satisfying the boundary condition (1)
and initial condition ¢=c', when t=0, may be found by the gene-
ral method of solving the equation of heat transfer in limited
bodies?.
Let us write the solution in the form
(£+2)2

@ (§-2)% <«
L. P ) _t)e oD
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which obviously satisfies the initial condition. The function f(— 3
is chosen so as to satisfy the boundary condition (1). This yields
201 j¢
f—B=c—TFp -

:Frank und Mises, «Die Differential- und Integralgleichungen der
Mechanik u. Physik», 2. Teil, Braunschweig, 4935.
s See formulae (7) and (15), Part I, Section 3.
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whence, after simple transformations, we obtain
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In particular, the concentration at the electrode itself in the

plane z=0 is obviously
T ]
c:co~Fi’/;, (5)

Formula (5), first obtained by S a n d® (see lower), shows that
the concentration at the electrode surface decreases with time, and
becomes zero after an interval of time

3]

nDc§
=

e (6)

On the other hand, a zero concentration of ions at the electrode
surface is the condition for the passage of the limiting current through
the solution.

Since the concentration is related to the electrode potential by
Nernst’s equation

RT
Q= F lg (C)2=0+ Po »

the electrode potential will rapidly rise when f== 7.

Thus < is nothing else than the transition time.

The expressions obtained for concentration ¢ and transition time
< are the solutions of the problem in the zero approximation and are
valid for small values of . The curve j as a function of 1/}/= is,
obviously, linear at large values of 1Y =

In the first approximation, at somewhat greater values of ¢, the
convective term in equation (2) can no longer be omitted.

However, since this term is small, its value taken from the zero

approximation from (4) may be substituted for a‘?f. Taking the

derivative of (4) .and substitutingg-z into (2) the following equation

4 Sand, Phil. Mag., 1, 45 (1900).
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rection for the first terms, depending upon molecular diffusion,

i. e. for
Y2 13/
,,,,,,,,,,,,,,,, N 2,
0.08 FY =D >
With-{ equal to = the concentration at the electrode surface beco-

mes zero and equation (10) results in the following dependence of
transition time upon the density of the current passed through the
solution: ‘ -

. clF 1

= = . . 11

/ l/":' C(1-0.080° (rD)"/2 v~ /2 /2) (1)

1t may be seen from this expression thal t increases somewhat
owing to stirring, and the curve j= ](VID departs from a

straight line. For still greater values of t, when the convective term
in (2) becomes of the same order of magnitude as the diffusion
term, Lhe solution of the equation for ¢ could not be found.

‘Formula (5) was first derived by San d*, but his derivation
is erroneous.

Formula (5) for the zero approximation of ¢ is in fair agreement
with S and’s experiments+ 2, as well as with those of other authors °.
Butlerand Arms trong’have, however, disclosed an essent-
ial departure from it at large transition times (small 1/7). They
suggested the following empirical formula relating j and <

(G—Jo) == (12)

where j, and 2 are conslants depending upon the stirring of the solu-
tiom. : '

This dependence seems very strange, since il follows therefore
that with small enough values of jthe stationary passage of a limit-
ing current through the solution is not attained even in an infinite
time interval «. The experiments of Butler and Armstrong were car-
ried out under conditions of natural stirring, so that our computations
cannot be directly compared with the results of their measurements.

5 §and, Z physik. Chem., 35, 644 (1900).
¢ Karnoglanofi, Z Elektochem., 12, 5 (1906).
7Butler and Armstrong, Proc. Roy. Soc., 189, 406 (4933).
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Qualitatively, however, such a comparison may be attempted.
In Fig. 1 the data of Butler and Armstrong are plotted j/A viz.

14
7

Fig. 1.

1))/ =. Tt is seen that with large
values of 1/‘/4: a linear course of

i=f <‘—/%> is observed, but with

smaller values of 1)/ = the decre-
ase in j becomes slower. This
is no full qualitative agreement
with the formula. (It should be
reminded that formula (11) can-
not be used for very small values
of 1/]/; .) A quantitative com-

parison 18 difficult, since the thickness of the diffusion layer in
the experiments of Butler and Armstrong is unknown.

Thus on our opinion, itis quit

e likely that the departure observed

by these authors from formula (6) is related to the discussed effect,
and that the empirical formula (11) results from unjustified extrapo-

lation.
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