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Theory of Concentration Polarization. II'

Ly B. Levich

1. Non-streamlined eleetrodes

The firsl part of the present investigation was restricted to the
discussion of phenmomena at electeodes of good streamline shape
such az an infinilte plaite or a disc. [t was shown there that the mag-
nitude of the limiting current flowing towsrds the electrode (or
the rate of dissolution) is determined primarily by the mode of
stirring of the electrolyla in Lhe vicinily of the electrode, in other
words, by the conditions under which the liquid flows past the
elegtrode. In the case of a plate the limiting current density was
shown to be proportional to the resistanee coefficient.

We congider now the cases when the shape of the eleatrode ia that
of a non-streamlined body, as, for instance, a cylinder located
transversely to the flow, a sphere, or an electrode with salient
angles.

The manner in which the stream flows past the electrode and
thus the manner of stirring will in these cases essemtially differ from
that of the flow past a plate. It may be, therefore, expecled that in
the case of non-steamlined electrodes new phenomena will be ghserved
and that the laws governing them will differ considerably from these
gbeerved in the ease of plates and discs. The latter may also be infer-
red from data obtained in measuring the heat exchange at the sur-
face of non-streamlined bodies in a liquid flow.

Let us now Lriefly dwell on the picture of a llow past asclid ho-d.y
of non-etreamlined shape immersed in a liquid ®.

! Part 1. Acta Phys. Chim. URSS, 17, 253 (1842).

A more detailed description of ntrstm]me. motion may be found in
toot thooke dn hydrodvnamics, in perticular in d&ur]ernﬂwaﬂ.npm&nta quluM
Dy namicas, édited by D Goldstein, Oxford, 1938
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As in the caze of a plate, there will exist a Prandul larminar boun-
dary layer at the surface of the solid body for sufficiently great
Reynolds numbers. This boundary layer differs, however, widely
from that at the a:urfa.ce of an nfinite plate. Namely, as it is scen

from Prandtl's equutmn £ _ 0, the pressure inside Lhe boundary layer

ay
iz equal to the pressure in the external flow. Therefore, if thers is
no longitndinal pressure difference in the external flow past asolid
body, the pressure within the boundary layer will also remain
conslant along the entire boundary, as in the case of & stresm flow-
ing past a plale.

In the case of a non-etreamlined body there must necessarily
be a pressure drop in the external flow. This 15 seen, in particular,
from the Bernoulli equation

1
{+%=mnsi

which shows that in the vicinify of the stagnation point of the flow
and at the rear of the body the pressure rises (velocity diminishes),

. and in the]vicinity of the largeet cross-section of the body (its middle

part) the pressure diminishes (velocity increases). The pressure in
the boundary layer varies correspondingly: it falls from the stagna-
tion point towards the jpart of largest cross-section and then rises
towards the rear. This leads to a most important phenomenon,
wiz. the separation of the boundary layer from the surface at therear
of the hody. For the reader’s convenience we shall recall hore the
usual explanation of the mechanism of separation®.

Sinee the pressurzin the boundary layer is equal to that in the
main svream, the fluid motionin the boundery layer at the rear will
he retarded by the upstream pressure gradient.

The tangential component of velocity inside the boundary layer
varies, following a definite law, from zero on the wall to its value
in the mainstream (Fig. 1, wherein is shown the profile of the tangen-
tial component in the boundary layer). On the eontrary, the pressure
in the boundary layer remains constant over the entire cross-section

of the layer, in virtue of Prandtl’s equation ‘;§=ﬂ.

* Soe Part 1, Section &, equation (5).

i Frof, L. Landan has shown (private informatiou) that the uvgual
treatmant of the separation qhonnumn.un is pot strict emough, In fact,
the meparation point is a umgu rity point in Prandtl's equations.
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Therefore, the retarding effect of the upstream pressure gradient
will be exerted, firat of all, on the motion of the fluid particles at
the sorface of the body. AL & certain point the upstream pressure
gradient will completely stpp the liguid particles ai the wall,
and beyond this point the particles will begin to move under the
action of the upstream pressure gradient in the reverse direction,
. ¢ also upstream. Fig. 1 shows
schematically the gradual varia-
tion of the velocity profile and
the formation of the upstream
current. The more remote par-
ticles continme ta maove down.
stream, 8o that at this point
the boundsry layer will sepa-
rate from the solid surfacs and
thus be transformed into a jet
entering into the bulk of the
ligquid. The fluid motion in such
a jel is unstable and beyond the
separation point M it becomes Fig. 1.
turbulent. Thus at the rear of
the solid body there exists a zone of turbulent flow ecalled the
turbulent wake of the solid, the stirring conditions in this zone
being subslantially different from those ai the forward part of the
golid body. '

The position of the separation peint on the body ia ohviously
determined from the condition

du

ay |.|--IJ=
expressing thal the tangential velocity at the wall increases with
the distance from the lattér beyond this point upetresm and dimi-
rishes from this point downstream (i. e. increases in absolute value
but is of oppeosite direction). Methods of caleulation used in
hydrodynamics allow to find the separation point frnm this
condition int the simplest cases.

The general picture of stirring is thus much more complicated
than, for instance, in the cese of a plate, and itis therefore difficult
to draw any general conclusiong on the magnitude of the limiting
current and its distribution over the electrodesurface. In particular,

i*
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in the case of 8 nonstreamlined electrode proportionalily betwern
limiting current and resistance coefficient no longer holds as it does
for a plate.

In the simplest case of a cylindrical electrode placed perpendicu-
larly to the electrolyte flow, & number olinteresting conelusions may,
however, be drewn on the distribution and partly even on the
value of the limiting current.

Let ue consider s eylindrical electrode which is locsted iransver-
sely to the electrolyte flow. As it was jusl pointed out, for suffi-
ciently large Reynolds numbers a Prandtl houndary layer will be
formed in the front part of the ecylinder, at its rear the heundary
layer will separate from the surface, and behind il a zone of turbu-
lent stirring will arise.

Messurements show that the separation point is situated 8 deg-
rees in front of the equator, the boundary layer thus embracing (he
cylinder only in the 164" zone. The limiting current densities may
be caleulated theoretically for the front part of the cylinder.

For the case when heat trapsmizsion is involved, a computelion
is given in Goldetein's book, however, in the limiting case of large
Prandtl numbers, in which we are intereated, the rr::sult ohtained
differs somewhat from that of Goldstein.

The equations of the boundary layer under action of & pressure
gradient may be written®
“"‘""’ ay-“E =5m :

ri'

ﬁ' =0,

where z and y are the tangential and normel coordinates with regard
Lo the eylinder surface, # and v — the tangential and normal velocity

components, and the term u,ﬂ , equal t.u——gralip in virtue

of Bernoulli's equation, represents thepreau-ure.grad:enl. in the main
stresm.

Near the stagnation point the velocity of the outer flow (with
regard to the boundary layer) may be written u, = id"i where u,is
the velocity in the unperturbed flow remote from the eylinder, d is

4 oModern Deveal nt Fl amices, Vi i
Golds oo uxtamrm (aa; in Fluid Dyoamicss, Vol. 1l p. 631, edited by
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the cylinder diemeter and £ — the arc distance from the stagnation
point.

The solution of the boundary layer equalions valid for compar a-
tively small arc distances z can be regarded 25 a function of coordi-
ngte y only. Computation yields

a=tZ iy o= —(22) "),

where n= (““) y, and Lhe lunction §satisfies equation

1"=H=14F" (1)
with boundary conditions
JHO)=F0)=0; f(=)=1. (17
The equation of convective di.IIusinn is
de 3%
wiitug =D e (2)

with ¢=¢! at y—+cc and e=e¢, al the cylinder surface (at y=0).
Passing to a new variable % and substituting v, there obtaing
" Pr fe' =0, (3)
where Pr =1ﬁ is Lhe Prandl]l number.
The solution of equation (3) for a conesntration ¢ is

Sexp(-—-Prde-q)dq

el =g % - (4)
‘ iexp(vFr§jdq)dq

Correspondingly, Lhe currenl density jis

J=DF(&F) _Fn(““v")"’m_m!m )
e o

Thus with small angular distances from the stagnation poiml,
the current densily on the cylinder is independent of the distance lo
this peint. The integral in (5) mey be calenlated numerieally Irom

Ahe numerical selution of equation (1) far (). .

The results of this calculation shall not be presented here being

of no speciel practical interesi, and only the menmner in which the
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integral depends upon the Prapdtl number will be outlined. Namely,
since f(v) is very large compared with unity, the integral in (5)
converge rapidly. Therefore, in order to eztablish this dependence,
it iesufficient to expand fin) in a power series in 7 and restrict
ourselves to the first terms of the series.

In virtue of the boundary conditions (1) for f, the expansion
will be of the form f=uan"4 ... Therefore, for ;7 there oblains

j~®D (MY 5)

Formula () is valid enly for the front part of the eylinder. 1t
is not possible to derive a formula fer the diffusion corrent
density valid for lerge distances from the stagnation point.

One may only expect that near the separation point the cucrent
density is less than at the stagnation pointbecause of the more favou-
rable stirring conditions. Beyond the separation point, however, the
stirring conditions are appreciably improved owing to the tarbulent
nature of the flow.

Therefore, the current density must increase andremain appro-
ximately comstant over the entire resr part. Sinceit is not possible
to caleulate the surrent densityin theseparation zone, messurements
acquire in Chis case a special interest, The current density distribu-
tion over the oylinder surface described hereis in agreement with
measurements of heat transmission.

With very large Reynolds numbers (of the order of 107), the pic-
ture of thellow past the cylinder changes: the flowinside the boundary
layer becomes turbulent. Owing to the vigorous stirring oceur-
ring in the turbulent flow, its interaction with the external flow and
its carrying off by the latter iz stronger, sothal the separation of the
turbulent boundary layer ooeurs later, ¢, ¢. further downstream, than
in the cese of a laminar boundary layer. Turbulence in the boundary
layer causes theseparation point to be displaced downstream beyond
the equator Lo an angle of about 2407, =0 that the boundary layer
is mow sadjacent to the cylinder over a much greater surface.
This is related to a eonsiderable decreaze of the hydrodynamic resi-
atamce coefficient [so-called resistance crisis) the latter diminish-
ing four times with turbulence appearing in the boundary layer.

The transition from laminar to turbulent boundary layer will be
of-no less importance in relation to the phenomena in which we are
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interested. Since the atirring conditions improve markedly with the
appearance of lurbulence in the boundary layer, the current to the
oylindrical electrode must also appreciably inerease. Therelore,
turbulence in the boundary layer is 4 very useful method of reduring
the polarization coneentration. The fall of the resistance coefficient
«ooours, it is true, at very high Reynolds numbers, so that, for exam-
ple, in water, with v=107", and a cylinder diameter d~1 cm.,
the corresponding velocity will be of the order of 107 ¢m. per se-
cond, which is very seldom reslized
in elestrochemical practice, Hydro-
dynamical researches have shown,
however, that the occurrence of the
resiztance coefficient fall may be for-
warded by means of an artificial in-
orease of turbulence in the fluid flow
past the eylinder.

With sufficienily intense turbu-
lenee of flow the Reynolds mumber, Fla. 2.
at which turbulence oecurs in the
boundary layer, may be decreased by several times. Intensified
turbulence of flow is attained either by projecting il through a
turbulence grid or by fixing strips or rings at the [ront part of
the cylinder, or simply making its surface suffaciently rough.

Comparing finally a eylindrical electrode with aflal one, we come
to the conclusion that,from thestandpoint of diminishing the con-
centration polarization, the former is more advantageous.

Similar qualitative considerations allow of drawing certain
conclusions on the manner in which objects with considerable rough-
niesa of the surface are dissolved. 1f the dimensions of the salients are
large enough, so that they praject beyond the boundary layer limits,
the fluid will flow past eachsuchsalient as past a body with an angle.
Fig. 2 shows the nature of the fluid flow close to such a salient.
Eddies are seen to break away from its top, =o that in the zone
directly behind it the fluid motion at the body surface will be turbu-
lent. Because of the more vigorous stirring in the zone of the salients,
dissolation will proceed more rapidly and they will tend to heamooth-
ad out (Fig. 2, dotted line). Lt is easily seen that the polishing of tho
object dissolved,attained thereby, will continue only until the size
of the roughness remains larger than the thickness of the boundary

125 B. Levich

layer at the sorface of the body. These sonsideralions pertain, of
course, only to Lhe dissolulion of chemically wniform samples,

Let us apply, finally, similar qualitative considerations in the
diseussion of the diesolution oreoreosion of an angular electrode under
natural convestion. Dissclution (Fig. 3) is known to ccour in such
a manner that the region of the angle itsell dissolves fasior than
faces remote from it.

Al first glance, it may seem that such phenomena cannaot be the
result of the stirring conditions and have to be accounted for on the
basis of other considerations. Usually, in
a fluid [lowing pest a concave angle the
rogion of the angle itself is in fact the
region of stagnation of the fluid and the
stirring conditions are here most unfavou-
rable for dissolution. However, with suffi-
LA ciently wigorons natural conveetion, oocur-
LN MR ring usually under dissolution, the picture

might change. The dowonward [low of li-
quid in the boundsry layer will meet a
. counter-pressure exerted by the horizontal
wall.

In fact, at the wall the wvertical fluid
velocity ie ezero, and, corrcspondingly, close
to it the preszure in. the fluid is higher
than et a distance. Therefore, the flow in
the boundary layer will he exactly in

response with the picture deseribed above of the flow at the back
of a non-streamlined ]}nﬁy. _

Gounter-pressure in the boundary layer will resull in its separa-
tion from the wall and in the formation of & zone of turbulent s Lirring.

A caleulation of the position of the separation point does not seem
lo be peseible, This point may, however, he expected to be not very
far from the angle, so that in the angle itself a sufficiently vigo-
rous stirring of the solution will obtain (Fig. 4). An experimental
verification of Lhese concepts of the dissolulion of angles would be of
greal  interest,

We presume that such qualitalive sonsideralions may be alzo
useful in other cases, when the general picture of the flow in the
solution is ciear enough,
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2. Epontaneous stirring

In practice a current is very often passed through a solutionsub-
jeot to no srtificial stirring. In some euses the solution is prevented
from being stirred in order to eliminate entirely convective trana-
port of ioms in the selution; in other cases, mostly in industrial pro-
cesses, stirring 15 nol carried out becavse of the cumberness of
the respective apparatus,

ILis, therefgre, of interest Lo discuss the problem of the passage
of current throngh a solution under natural convestion. Two princi-
pal reasons can be indicated to which natural convection is due;
Tirstly non-uniform heating of various parts of the solution when
current is being passed, and, secondly, variable density of Lhe solu-
tion which is sesociated with the non-uniferm disiribution of con-
centration over the apace between elecirodes,

Non-uniform heating of the solution iz commonly associated with
the facl thal a greater current passes through some parls of the solu-
Liom, resulling in a more inlensive heating of lhese zones than olhers,
Apart from this effecl, non-uniform heating of the solulion may be
due Lo another source. IT heat is poorly transmitted from theelectro-
des, they may become, under the paseape of current, either heated
or vooled becanse of the evolntion or absorption of heat during the
chemical reaclions taking place al their surfaces. The latter effect
may become quile important when ions with a high overvollage are
liberated on the elestrode.

Stirring of the solution essociated with the non-uniform heating
within ils bulk depends essentially upon the geometry of the appa-
ratus, 25 well as vpon variows casual fsctors (evaporalion from the
solution surface, fluciuation of ambient temperature, ete.); there-
fore it can hardly be given a theoreticel discussion. However, suc-
ceseliul seleclion of the apparatus geometry and low eurrent demnsi-
ties can make this kind of stirring sufficiently small and thus its
offeet on the passage of current may be neglected.

Az far as stirring sssocisted with local heating of the solution
near the elesirode i3 comcerned, it can, as will be seen later, become
important only when the electrode is intenscly heated; nsuslly it is of
less importance than the conceniration effect. We restrict ourselves
therefore to the discussion of the lalter kind of stirring, the elee-
trode under consideration being sesumed in form of an inlinile plate
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disposed wvertically in the gravitation lield. We assume, besides,
a limiting current to pass through the sclution so that the soncent-
ration of the solution at the elestrode surface itself is zero. Far from
the elestrode, im the bulk of the solulion, the coneentration ig of,
The density of the solution near the electrode will then obviously
be less than in the bulk of the solution.

From general considerations related to the Bjerknes theorem it is
olear that convection will inevitably arise in the sclution, since
surfaces of equal fluid density are perpendicular ioc the surfgecs
of equal pressure,

Let us choose as plame y =0 the electrode directing the y axis
into the solution and the x axis verlically upwards. The concentra-
tion of the solution and, consequently, its density will, in a generg]
way, be functions not only of the distance from electrode (y), but
likewise of the position on the electrode (z).

The change of the concentration from itz value ¢! in the solution
to zero on the electrode surface will take place ina thin layer of the
fluid, in the diffusion layer near to the elecirode surface. Since in
our caze this change of coneentration is the only cause to which iz due
the liquid motion, the latter can ocour only inside the diffusion layer,
Therefore, in order to find the distribution of velocity and concen-
tration in the solulion, the equation of the boundary layer may
be written®

duw o du Bl e {1 —p (=)
vt =Vt m (N
de | de .
3}+rﬁ'ﬂﬂ' ':3:'
_ » ar
i v =D ®

where p(c} 1s the density of the solution at the poinil considered,
ple!) —its density remote from the electrode, » and » — the tangential
and normel velocity components.

Assuming the variation of the solution density to be small enough
and expanding the last term in {7) in & series, equation (7) may, on
neglecling all termes but the first, be written

Bu , du  awm 17 ap
”ﬁ“l‘*'?y—*a—,-'ﬂ;(ﬁ et (6=

' iModern Developments im Fluid Dynamicss, Vol 1T, €38, edited by
Goldstein, Oxford, 1938,
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It 38 convenient further to introduee instead of the coneentration

¢ thedimensionless quantity ,?=‘I_!c_£_ Equationz (7T) and (%) become
then

Fu de ity ¢
Bt Uy =9y Tem2. {7)
a ] a% .

where.

_tl ﬂp
z_l‘,'rT éﬁ)f-ril

The boundary conditions for equations (7°) and {%') are

w=u="

! =10 10
o1, }af (10}
H={],

—— 11
veg, [VF (11}

To solve equations (77) and (9°), we introduce a new dimensionless

variable
and the stream function
¥ =y [f_;]'“fr- i (x).

The velocily componenis being
H=§?w=ii¥ [g]q.f'{ﬂlu
a@F M ;
ey

The function f satisfies the equation

P43 =2 42 =0, " (13)

For 3 as a function of the dimensionless variable the diffusion
pequation may be written in the form

o'+ 3Prfe’ =0, - (14)

where Pr‘_"% is the Prandll number.
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The boundary conditions for # end ¢ are

I=f-ﬂ! _
o=1, }'q--ﬂ; (15}
=0,

In solving equalions (13) and (14) we take advantage of Pr being
very large compared with unity.

The solution of equation (14) salisfying boundary eonditions (15)
and (16) may be presented as

¥

—abr J‘ fdn

(17)

The function f in (17) is unkown. 1t can be ascertained, ho-
wever that as Pr is very high, the integrals converge quite re-
pidly, and their value is chiefly determined by the farm of § at
small =.

Owing o this fact, we may consider here as in the case of forced
convection the thickness of the diffusion layer, and with v > %' assume
that g ~ 1, the concentration being constant and equal to ¢, In this
case the boundary condition (11) mey be presented as

r=o0y _
s =0 }11—11 . (18)
With n <% the step-by-step method may bhe used in salv-

ing equation (13). At small velues of v the expansion of f may be
writlen : '

=g (19)

The terms of zero and first power in % must be absent in virtue

of the boundary condilion (15). Coefficient B has sa far not been
determined.




Theory of Conzentration Polarization. 11 [

On aceount of the rapid convergence of the integrals in (17) we
may substilute the first term of expansion (19) with suffisient ap-
proximation. There follows

pml— (20)

[are ey B oy
I et [ e Ma
a 1

O

With (fPr)*/eq = 1, g =0 owing to the rapid convergence of the
integral. On the contrary, with (APr)"en <1 we may appros
ximately write

Obviously, the thickness of the dilfusion layer may in thiz case
be defined as
(BPr)"fon’ =089
ar
0894

o (B @

Bt =

For function f with » <7' the following equation may be ap-
proximetely written

e — o+ (1- gt ) =o. @

Equatien (24} can be solved by the etep-by-step method. Sinsce
we are not interested in a high accuracy of coefficient values we

miay réstrict ourselves to the zero approximation. In the zero appro-
ximation the value of f ia

I=E¢‘ o (BPregs

and

T R d R
f=bn—%—Tmxe -
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In wvirtue of {18) with

, 088 L
M= =T F=0,
80 that
o M
F= (ﬁ.ﬁg} fu 'P‘:I'_I“‘ -
Hence from [21) ]
¢=054 Prig—0.54 P 5] 4 (25)
From (23) there obtains
1
v= nmr:?.h gx T T8
s ]

The demsity of the diffusion corrent flowing to the electrode

* (limiting cwrrent density) under natural convection is

L O . 1 2 Je 4
Jiim = 2F E)u_ﬂmﬂ.HzFPr n[%; - (26)
The fall current to the electrode will then be
,r=cr.72=FPrln[5 phth, {27)
i
The order of magnitude of = is:; gz)r-awﬂz since wusually

.:—*(g—g)t:gmi il¢' is given in per cent. .Thnrefnre, the order of
magnitude of the thickness of the boundary diffusion layer is

" A
N T Prgdsf i
5]
with :
el ~ 10-% S H g~ 0.03.

As coneerns the effest of the temperature difference between:
electrode and solution on the natural stirring, it may be neglected
in comparison with the effect just considered, since the solution.
density changes with temperature slower than with the concentra-
tion, when the temperature difference is not too ‘great.

Mo quantitative experimental data are available with which the
expression obtained for 3 coyld be compared.




Theory of Concentration Polarization, 11 191

In the well-known book of G lazstone end Hicklings
the value & ~ (.03 is reported, hut no data are given for ¢

3. Turbulent fow

In our previous investigation (Part I, Seclion 5) we used, follow-
ing Prandtl, for the mean free path & the expression h = ay., regarding
) as proportional to the distance from the wall. Further analvsis
has, however, shown thal Prandils expression for & iz velid only
beyond the limits of the viscous sublayer. Within it a somewhat
other expression mustbe used for the mean free path. The latter may,
nemely, be apparently presented as

h=twrat (28)
where Py i8 the main value of the t.urhu]vnl ipulsation) velocilies

and : 18 Lhe mean time of molion "-.—I = f(w)dw, where @ are the

frequencies of the turhulenl molion spectrum, and F(w} is their
partition funetion. The dependence of f{w) on the distance from the
wall is generally unknown. Strictly speaking, to each [requency
from the sgt of frequencies forming the spectrum of turbulent fluid
maotion there corresponds 4 definite value of the viscous sublayer
thicknese; thus the problem of the dependence of % upon g is very
complex and requires the study of the entire torbulent frequency
spectrum,

We shall restrict ourselves o a more limiled problem, sssuming
that the integrand has & sharp enough maximum in & region of the
frequency spectrum. Although the form of the partition funciion fiw)
is 5o far not known, such an assumption is quite natural. Phyzically
< cannot diverge, neither in the region of low frequencies nor in the
region of high ones. In this case the thickness of thesublayer, orres-
ponding to the frequencies at the spectrum maximum, must be tonsi-
dered the viscous sublayer thickness & Further = will have a guite
definite value independent of the dietance from the wall, zo that the
dependence of h upon y is determined only by ils dependence upon
the firat factor in (28).

"Hlasstone and Hickling, «Electrolylic oxidation and reducti-
on incrganic and organice, London, ? 3
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However, as it was shown in Part I, the normal component of the
mean pulsation velotity Dy is proportionsl toy®, 8o that X ~y?

Substiluting this value of & into the expression of the flow of
substance transported by turbulent pulsations (I, Seetions 5, 4)
end carrying out further trapsformations as it was done in I, there
results the following expression for the flow of substance Lo the
electrode

z“‘“

; [:1 (" Prilt — ) B /2]

This expression differs from (1, Sections 5, 7) in thel the depen-
dence upon the Prandtl number iz somewhsl different. Az concerns
ite dependence upon o or the velotity w, it agrees wilh the one writ-
ten earlier, so thal the whole reasomng from part I referring 1o
this point stll holds.

ﬁé:adamy of Sciences of the USSH, Roceived
1nstitute of f_‘.nuu;i; and Electrochemistry, Degembee 10, 1943,
SCOW _
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