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The Damping of Waves by Surface-Active
Substances. [l

By V. Levich

In my preceding paper! it has been shown that the spreading of
a surface-active substance on the surface of a liquid affects the bounda-
ry condibons at the surface and eventually alters the wery character
of the wave motion of the Yguild, In parlicular, the [ormation of vore
Hees in the surface layer is intensified, which in a viscous liquid.
leads to inecreased energy losses on friction, 4. ., to an increase in
the coefficient of damping of surface waves, The preceding paper was
devoted to the case of an inscluble surface-active subsiance, The pre-
sent work is concerned with the damping produced by surface-aclive
subsiances soluble in the substrate,

It will accordingly Dbe assumed in the sequel that the surface-
active substance forms a “surface solution™ of high concemtration on
the surface of the liquid, and a weak volume solution in the bulk of
the Hoquid,

A suorface solution is always In a state of statisfical equilibrium
with the adjacent layer of the volume solution, just as a vapour in
the layer adjacent to the liquid surface is always saturated and remains
in equiibium with the liquid,

If waves are generated on the surface of a Hquid, the concentra-
tion of the adsorbed substance is wvaried and tangential forces pro-
portional to the concentration gradient arse in the surface film,

In the case of an insoluble substance the total mumber of mole-
cules present on the surface remains constant and the change pro-
duced in the concentrafion is pgiven by formula (18) of the first.
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communication, whilst the corresponding tangential stress arsing in the
film is expressed by equation (25) of the first communication,

However, if the surface-active subsiance deposited is insoluble
in the substrate, the above formulae become inapplicable, since the
total number of molecules adsorbed on the surface {5 po longer con-
stanl, but varles as a result of transitions of molecules from the
surface into the volume and in the reverse directon. Since a surface
solution is in equilibrium with that part of the volume solution which
is contguous lo the surface, an extension of the surface will evi-
denily involve a fransifon of moleciles from the volume to the sur-
face, whereas a compression will produce am opposite effect,

Ii the deformations produced by the waves occur with g period
T, then, evidently, two limiting cases are possible;

I. The relaxaton time for the equilibrium between the surface
and volume solutions (or rather the adjacent part of the latter) is great

compared to the period of the wave %r;
2. The ralaxation time is small compared io r“:f

In the former case the deformation will proceed so rapidly that
the equilibrium between the wvolume and sudace solubions will fgil to
set in, and the molecules will have no fime to pass from the volume
to the surface solution and backwards,

Then the presence of the volume solution will not affect the
course of the process and all the conclusions of the preceding paper!
will be wvalid,

In the second case the volume and surface solutions may be
considered {o be in a state of permanent stalistical equilibrium,

It is this latter case thal constifules the object of our further
analysis.

Lel us, as belore, designate by v, the surface concentration on
the undeformed surface, and let + denote the total change of concen-
tration due to the deformation,

Similarly, let ¢, and ¢ denote, respectively, the concentratlon of
the volume solution and its change due to the diffusion of the substance
dissolved in the volume to the surfsce as a result of deformation of
the latter,

Then the condition of equiibrium between the volume and suriace
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solutions may evidenily be represented in the form:

w, (v 4+ ¥ =g, (c, + ﬂ]:;u’ (1)
where p is the chemical potential of the surface solution and p the
chemical potential of the volume solufion, The walue of the latter is
taken near the surface i e, when z=0.

Inasmuch as the dcformations ef the surface and, consequently,
the conceniration changes are infinitesimal, the chemical potentials may

be expanded in powers of ' and ¢ neplecting all terms except those
of the first order. Then we shall have:

and, since the volume solulion may usually be considered weak,
w,=RTlge4+L(p, T,

T-z";_:" (T?;]:w)ﬂ, (2)

where the value of ¢’ is taken near the surface, £ 2, when z==0.

The change in the surface concentration is due to two fachors:
deformation of the surface and diffusion flow from the volume which
tends to reduce the effect of the former factor,

The equstion of continuity for +', to within the infinitesimal
terms of the first order, may therefore be written as follows:

F=—r i —e(%) ®

The second term in eg, (3) is the diffusion flux from the volume;
a® is the diffusion coefficlent. In the first term account is only taken
of the concentration change due to but horizontal displacements

fe=3)-
In the absence of diffusion, eq. (3) is identical with eq. (18) of the
first communication '
To determine the diffusion flux from the volume solubon it is
necessary to solve the diffusion equation with respect to ¢, taking
into account boundary conditions (2) and (3).
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However, inasmuch as the boundary condibons contain terms
determined by the equalions of motion of the Uguid, the diffusion
equation with boundary condiions (2) and (3), and the equations
of motion of the liquid with the corresponding boundary condiions
should be solved simultanecusly,

The laiter are as follows:

a1
(Pudimg=" FE'

The former equation is idenlical with eq, (27) of the first commu-
micaion, The latter, though also identical in form with eq. (28) of the
first communicgtion, involves in the present case a different value

of '
ay
Subshtiting (2) in eq. (3), we ultimately obtain
dg o et o gf
Sr=a (S5 55, (4)
RT 1 e’y d, e’
el o
o —
3
;:"f—=—% Vp-t-rdD, (5)
Pl
Py =6 s o)
[
':pls:'l':ﬂ-'_' -‘_ '1..‘ {E} " I:'E'}
The solution of eq. (6) has the following form:
v, = % = — (kA = IC¢?) =i, (9)
0, = = (RAek — iRCe) e, (@)

-_]H .
=)/ -

The solution of eq. (4) satisfying boundary condition (5) is there-
fore sought in the form:

o' =By (z) =+l
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Substituting this in eq. (4), we Obtain

=Be * = et (10)

The amplitude, 8, of the diffusion waves may be determined by
eq, (B) after substituting ¢ from eq. (10) and », from eq. (3).
Then we have

H— g (R ({RA 4= 1C)
= BTa e ——
i, -+ V- ad kT
“ T"')'I'="|
50 that
Ve i arkt
SRal=Netey,
o — E;‘:Jk ((kA =) g ° S (107
W + a2V 4 4 B
h i =1y
whence
_ RT L wy ke ({kA 4 10) 2™
V= T {H}*ﬂ o 1 .ﬂ[:u ML, Vi 2 4t o~
& (WJ: Y IRT (—!.-TL., B (n
¥
wopkstal — "0 w i‘
arcy fOp, P X
1+ SPT {TH—)’:“ v -+ ot ki

where £ is the horizontal displacement on the surface,
Boundary condition (8) may therefore be writicn in the form:

{Pﬂ}a-ﬂ: ; 2 I llﬁl_r_' “'?}
1 ()., v

From eg. (12) it may be seen that in the case of a soluble
substance the role of the elasticily constant is played by a quantity
which depends not only on the elastic properties of the film, bul also
on the diffusion coefficient, volume concentration and frequency.

It will be readily seen that with a decrease in the volume con-
centration, i 2, with o, — oo, this effeclive elasticily constant tends
to g, On the contrary, with increase of ¢, the effeclive elasticity
constant decreases.

In the Hmit, as ¢, tends to infinity, the elaslicity constant beco-
mes zero. It stands to reason that eq. (12), which has been obtained
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in terms of the chemical potential of a weak solution. is only wvalid
al concentrations sufficiently remote from high ones. And yet this
expression conveys the general trend of the elasticity constant,

Putting o =—/iw-=-% and substituting (9) and (9) in boundary
conditions (7) and (12), we obtain equations from which B can be
determined. We shall confine ourselves to the most interesting casc —
that of capillary waves-— and put If}gl as before,

2 4
Further, it may always be considered that %@l.

We shall limit ourselves fto the case where

acy ou
R — - l.
RTV@ ( dy )‘=u>

It may indeed be readily scen that when

_ac _[du,

RT Vw ( oy )vav.ﬁl
this term may be dropped and we return to the case of am imsoluble
substance,

(f

Ry (.‘i&) ~ ]
RT“‘I’ t)v r=np

simple computations show that this also leads to the former expression
for the damping coefficient [eq. (37) of the first communication’), If

acy Opky
RTVw ( dv )v:‘.\>l’

then, after meglecting the corresponding terms, we find from (7)
and (12):

12"*' ‘”x RT Vie

to w2 - c_hi,) a A—
0( oy Yavg
(13)
k3 ] Ty RT Vio
— i _I+F X A3 > 4 a“‘ x - C=0,
c‘(-;\_'-)n\o

(22 +2¥a—c=o. (14)

fx
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From eqs. (13) and (14) it may be seen that there exist two

regions: [
RT s\
dj.L‘} X e
l-'u (‘-ET ="y
ar
I 'ﬂ_'l""!
.lril'l:* - " E‘.{ fhy )v:vq-, [15]
g RT
and [I
BT Vo nkd
e, - a | m
c”[ e Jh=-
or
-I:Ir.l.
E'l’q - L (“;'}1-:-. . {.15}
s RT

Meglecting the comesponding terms in egs. (13) and (14) we
obtain the following expressions for the damping coefficient:
For the first region,

| LRTE"
— I eRT K w aggh (17
T 292 ad'ig (ﬂ_h) 14 CIRTIR
(] =g -ﬂ-l'ﬂ'T,

From eqs, (15) and (17) it follows that in region [

Py ~na i,

We thus may say that in this region the damping coefficient
somewhat reduced as it Is owing to the access of molecules from the
volume, is nevertheless of the same order of magnitnde as in the
case of an insolohle film,

In the region intermediale between [ and IV, £, 2, when

nkT RTYea -y
Ty My

0,
il ( L-I'f }'I:H.

we have

1 BTN

Bon=—= '
22 ac, e {%J‘Fﬁ
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Finally, in region I the damping coefficient
ﬁu = E'ﬂ-‘ﬁ:,

(., e., in the region (II) corresponding to either large wave-lengths or
very high volume concentrations, the damping coefficient is the same
as in the pure lquid.

The latter result is but natural, since at sufficlently high volume
concenirations ihe solution becomes homogencous and differs from the
pure Hquid omly in the valuc of the surface tension.

The results obtsined in commumication I as well as in the pre-
sent paper may be direcily applied to the case of the electric double
Jdayer on the surfice of mercury. Bruns, Frumkin and ofhers®
have observed the disappearance of the maximum on the current-
voltage curve for the mercury eleclrode due to the damping of capil-
lary waves on the mercury surface. This damping effect is produced
by the lons possessing & charge opposite to that of the surface,
which are adsorbed from the wvolume solulion on exfended surface
clements and are desorbed from compressed elements, As is known
from the theory of electrocapillary phenomena, the change of the
surface fension involved iz equivalent to that produced by varying
the concentration of a surface-active substance,

The effect just mentloned is therefore identical with the damping
effect of a soluble surface-setve substance considersd in the present
paper,

A similar phenomenon of disappearance of the corrent maximum
on the mercury eleclrode has been observed with insoluble surface
active substances deposited on the electrode”,

In conclusion the anthor wishes to express his deep gratitude to
Prof, [. Landau for his interest and guidance throughout this work.
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