Solvatation und Komplexbildung in Elektrolytlösungen

Von Wladimir Finkelstein

Die Klassiker der Theorie der Lösungen D. Mendelejew, S. Arrhenius, I. Kablukow, G. Ciamician, A. Werner u. a. verknüpften eng die Prozesse der Bildung von Lösungen mit der Zwischenwirkung ihrer beiden Komponenten.

Durch die Bildung elektrisch leitender Lösungen und in erster Linie durch die Spezifizität dieses letzteren Phänomens (z. B. die wässerige Lösung von HCl leitet ausgezeichnet, und die Lösung von HCl in HCN ist ein Nichtleiter) wird diese Zwischenwirkung besonders betont.

I. Kablukow¹ ist schon im Jahre 1892 zum Schluss gekommen, dass das Molekül des Lösungsmittels beim Einwirken auf das Elektrolytmolekül die elektrolytische Dissoziation des letzteren bewirkt; dabei bilden sich Ionensolvate (Hydrate). A. Werner hat ein Bild der Hydratbildung in Lösungen vom Standpunkte seiner Koordinationstheorie vorgeschlagen.

Die weitere Entwicklung der Theorie der Lösungen (Debye, Onsager u. a.), so wie das grosse Versuchsmaterial, welches von mehreren Schulen (P. Walden, W. Plotnikov, Franklin, Ch. Kraus u. a.) gesammelt wurde, liefert uns jetzt die Möglichkeit, vom einfachen Feststellen der experimentellen Tatsachen auch auf diesem Gebiete zu theoretischen Verallgemeinerungen übergehen zu können. Man muss jedoch betonen, dass das vorhandene Versuchsmaterial noch nicht hinreichend ist, um entsprechende Rechnungen auszuführen, und das ist die schwache Seite jeder Verallgemeinerung. Deshalb möchte ich mir vorbehalten, dass die prinzipiellen Fragen, welche ich in diesem Vortrage stelle, als Aufstellung einiger Probleme, deren Lösung auf Grund der Arbeit unserer Konferenz folgen soll, angenommen werden sollen.

¹ l. Kablukow, J. russ. phys.-chem. Ges. (russ.) 24, 440 (1892).

Die Frage über die Zwischenwirkung des Elektrolytes und des Lösungsmittels oder im Falle einiger ternärer Systeme 2 des Elektrolyts und des Solvatisators wird durch mehrere Forscher verschieden gelöst. Die einen betrachten das Lösungsmittel als ein dielektrisches Medium, welches die verschieden geladenen Ionen teilt und ihre gegenseitige Wirkung nach dem Coulombgesetze bestimmt, die anderen nehmen noch eine gewisse Orientierung der Moleküle des Solvatisators im Felde der Ionen an, und endlich die dritten meinen, dass die Zwischenwirkung des Ions und der Lösungsmittelmoleküle rein chemischer Natur ist, d. h., dass das Produkt dieser Wirkung, also das Solvat, oder richtiger das Komplex, durch die Gesetze der Stöchiometrie bestimmt wird.

So meint z. B. P. Walden⁸, dass "neben den physikalischen (elektrostatischen) Faktoren noch andere mitwirken, die wir als chemische bezeichnen möchten, da sie: 1) von der chemischen Natur der Kationen und Anionen des Salzes, sowie 2) von der chemischen Natur der Gruppen des Lösungsmittels abhängen".

Auf ähnliche Weise meint auch M. Rabinowitsch4: "Wahrscheinlich betätigen sich bei ihrer (der Komplexe und Solvate-W. F.) Entstehung chemische Kräfte, die im Molekül nach Absättigung sämtlicher Koordinationsvalenzen freibleiben".

W. Plotnikow erklärt das spezifische Verhalten der von ihm und seinen Schülern untersuchten Lösungen in Medien, welche im allgemeinen durch kleine Dielektrizitätskonstanten (wie Brom, Benzol, Toluol u. s. w.) bevorzugt sind, durch die Bildung von Komplexen, Solvaten und Polymeren 5. W. Plotnikow betrachte in seinen meisten Arbeiten die Frage über die Natur der Kräfte, welche die Bildung des Wirkungsprodukts zwischen gelöster Substanz und dem Lösungsmittel oder Solvatisator bestimmen, nicht. Doch betont er in seinem Buche "Untersuchungen aus dem Gebiete der

<sup>Wenn, z. B. das Elektrolyt AB gelöst in C eine nichtleitende Lösung bildet und nur bei Zugabe eines dritten Körpers S Leitfähigkeit entsteht.
P. Walden, Elektrolyt und Lösungsmittel. Vortrag zum Jubiläums-Mendelejeffkongress, Leningrad, Sept. 1934 (Sonderdruck).
M. Rabinowitsch, Z. physik. Chem. (A) 147, 370 (1930).
Siehe z. B. W. Plotnikow u. O. Kudra, Z. physik. Chem. (A) 145, 265 (1929); W. Plotnikow u. S. Jakubson, Z. physik. Chem. 138, 235 (1928); W. Plotnikow, J. Fialkow u. Tschalyj, Memoirs of the Inst. of Chem. Ukr. Acad. of Sci, 1, 139 (1934).</sup>

Elektrochemie nichtwässriger Lösungen" 6, dass "die chemische Erklärung der elektrischen Leitfähigkeit im allgemeinen nicht als befriedigend anerkannt werden kann".

M. Ussanowitsch und seine Mitarbeiter kommen im Verlauf ihrer vielen Untersuchungen über Ätherlösungen zu dem Schluss, dass: "in den binären Systemen, bei welchen einer der Komponenten Äther ist, die elektrische Leitfähigkeit nur in denjenigen Fällen entsteht, wo der Äther mit den anderen Komponenten eine Verbindung, welche zum Typus der Oxoniumverbindungen gehört, bildet" 7. Vom Standpunkte der Bildung chemischer Verbindungen zwischen dem Lösungsmittel wird das reiche Erfahrungsmaterial dieser Forscher von ihnen untersucht, - darüber wird auf dieser Konferenz der Verfasser einen besonderen Vortrag halten.

Es muss noch an dieser Stelle betont werden, dass diese chemischen Theorien zu einer dualistischen Vorstellung über die Natur der Elektrolytlösungen führen, die noch keine der heutigen Theorien der Elektrolyte zu vermeiden vermag. So teilt P. Walden in seinem Vortrage auf dem Mendelejeffkongresse (1934)3 die Elektrolyte ein in: 1) normale, d. h. solche, die sowohl an sich im geschmolzenen sowie im gelösten Zustande eine elektrische Leitfähigkeit besitzen, und 2) potentielle, Pseudo- oder Solvo-Elektrolyte, die im geschmolzenen Zustande keine Leiter sind, doch, in entsprechenden Lösungsmedien gelöst (durch chemische und physikalische Einwirkung), Elektrolyte werden können (Solvoionisation). Aus dem folgenden wird klar, dass zu der ersten Gruppe die "typisch heteropolar gebauten Stoffe", d. h. starke Elektrolyte gehören, und es entsteht also die Frage über die Rolle des Lösungsmittels in diesem Falle.

Der Klassifikationsversuch (z. B. der Lösungsmittel in nivellierende und differenzierende), welcher in dieser Arbeit von Walden3 mit grosser Sorgfalt durchgeführt wird, ist sehr wichtig als eine Methode zur Systematisierung des enormen Erfahrungsmaterials, liefert jedoch keine Möglichkeit, um den obenerwähnten Dualismus zu vermeiden.

In einer Reihe unserer Arbeiten wurde ein anderer Versuch gemacht, um diesem Dualismus zu entgehen. Wir sind mit der Ein-

 ^{6 (}russ.) Seite 85 (1909).
 7 M. Ussanowitsch, J. allg. Chem. (russ.) 4, 215 (1934).

teilung der Elektrolyte in zwei Gruppen, die Walden vorschlägt, einverstanden; doch ziehen wir keine scharfe Grenze zwischen diesen beiden Gruppen. Das Wesen liegt hier in der Aufeinanderwirkung beider Ionen, in der Deformationswirkung des Kations auf das Anion; infolge derselben wird die Bindung z. B. AsCl, so fest, dass die reine, flüssige Substanz eine Leitfähigkeit von der Ordnung 10-7 58 besitzt. Nach der Ansicht, die wir in mehreren Arbeiten 8, 9 ten, erscheinen solche Verbindungen wie AsCla, welche unter bestimmten Bedingungen Elektrolyte werden können, in zwei Molekülgattungen: 1) mit stark deformierter Bindung - also homöopolar und nichtdissoziierbar und 2) heteropolar - d. h. in Ionen gespalten. Diesen Gedanken haben schon im Jahre 1922 J. A. Wasastjerna und dann im Jahre 1928 Scheibe 10 u. a. ausgesprochen.

Unsere Untersuchungen der Raman spektren dieser Elektrolyte, über welche weiter unten noch gesprochen wird, bestätigen diesen Standpunkt in dem Sinne, dass wir in den leitenden Lösungen, ganz scharfe Ramanlinien der Moleküle AsCla, AsBra, SbCla fanden.

Wir stehen also auf dem Standpunkte der Hypothese eines statistischen Gleichgewichts zwischen zwei Typen der Verbindung AB: AB und A+ · B-; die erste Form bestimmt in der Lösung die ganzen Moleküle, die zweite die Ionen. Durch Solvatation wird das Gleichgewicht im Sinne der Bildung der zweiten Form bewirkt, und damit nimmt die Ionisation in der Lösung zu.

$$AB \rightleftharpoons A^+ \cdot B^- \rightleftharpoons A^+ + B^-$$

 $A^+ + nS \rightleftharpoons A^+ n \cdot S$ u. s. w.

Von den klassischen Ansichten abweichend, meinen wir, dass, wenn unter der Wirkung bestimmter Bedingungen ein Teil der Moleküle der Substanz ionogen geworden ist, also nach der Vorstellung eini-

⁸ W. Finkelstein, J. russ. phys.-chem. Ges. 62, 162 (1930). ⁹ W. Finkelstein u. M. Aschkinasi, J. allg. Chem. (russ.) 2, 797 (1932); W. Finkelstein u. P. Kurnossowa, J. allg. Chem. (russ.) 3, 132 (1933). ¹⁰ Wasastjerna, Z. physik. Chem. 101, 193 (1922); Scheibe, Elektrochem. 34, 502, 519 (1928).

ger Autoren 11 eine intramolekulare Ionisation stattfindet, so werden diese Moleküle vollständig in Ionen zerfallen, wie es die elektrostatischen Theorien nach Debye-Hückel fordern.

Zum Verständnis der Zwischenwirkung mit dem Lösungsmittel ist das reiche Versuchsmaterial über die Lösungen in Medien mit niedrigen Dielektrizitätskonstanten sehr wertvoll. In diesen Fällen zeigt sich stark die Wirkung der Ionenfelder, und die Effekte der Solvatation, Assoziation u. s. w. äussern sich mit grosser Deutlichkeit. Wir werden an dieser Stelle über einige Untersuchungen sprechen, wo diese Effekte besonders klar erscheinen. Schon im Jahre 1922, als ich die Bromlösungen einiger Elektrolyte kryoskopisch 12 untersuchte, habe ich gefunden, dass das PBr, z. B., bei Konzentrationen von ca. 5 Gewichtsprozenten oder 2,65 Molprozenten einen Assoziationsfaktor gleich 2,3 (Molekulargewicht = 994) zeigt; dabei ist die elektrische Leitfähigkeit von der Ordnung 10-6 o, und bei etwa 10 Gewichtsprozenten steigt das Molekulargewicht von PBr₅ bis auf 1300.

W. Plotnikow u. S. Jakubsohn 18 haben gezeigt, dass im System PCl₅ - Br₉ (welches auch ganz gut den elektrischen Strom leitet) ein Eutektikum bei PCl5 · 5Br2 entsteht.

W. Isbekow 14 fand, dass mehrere Salze HgBrg, SbBrg, BiBrg u. s. w., welche mit geschmolzenem AlBr₈ leitende Systeme bilden, in diesen Lösungen eine Assoziation zeigen und Molekularverbindungen mit AlBra bilden; die letzteren wurden ganz leicht durch thermische Analyse bestätigt.

Der Vortragende hat in mehreren seiner Veröffentlichungen, ähnlich wie es auch andere Forscher tun, auf die chemische Affinität zwischen Elektrolyt und Lösungsmittel oder Solvatisator hingewiesen 8,9. Im Lichte heutiger Vorstellungen über die Natur der Wirkung zwischen Dipolen und Ionen kann der Begriff dieser Affinität so wie der chemischen oder physikalischen Zwischenwirkung, wie es oben schon betont war, etwas mehr begründet werden.

Siehe z. B. M. Rabinowitsch, Vortr. auf der V. phys.-chem. Konferenz (russ.), S. 267 (1930); Ukr. chem. J. (russ.) 3, 295 (1928); Z. physik. Chem. (A) 147, 347 (1930).
 W. Finkelstein, Z. physik. Chem. 105, 10 (1923).
 W. Plotnikow u. S. Jakubsohn, Z. physik. Chem., 138, 243 (1923).

^{243 (1928).} 14 W. Isbekow, Z. anorg. Chem. 84, 24 (1913); 143, 80 (1925).

Wie schon von vielen Autoren und auch von mir darauf hingewiesen wurde, muss als Grundfaktor, welcher die Solvatation bewirkt, ausser der Ladung und der Grösse des Ions, die Polarität der solvatisierenden Moleküle angenommen werden.

Die Vorstellungen von Bernal und Fowler 15 über die Struktur der Flüssigkeiten und über den Einfluss der Ionen auf diese Struktur, sowie die von ihnen ausgeführten Rechnungen der Koordinationssphären, welche mehr oder weniger durch die solvatisierenden Moleküle des Wassers ausgefüllt sind, betonen noch mehr die Bedeutung der Struktur und Dipoleigenschaften der solvatisierenden Moleküle.

Debye und Sack 16 bemerken mit Recht, dass die Assoziation von Dipolmolekülen wegen ihres Zwischencharakters zwischen rein chemischer und physikalischer Natur besonders schwierig der quantitativen Bearbeitung zugänglich ist. Noch verwickelter wird das Problem bei der Untersuchung über die Wechselwirkung von Ionen und Dipolen.

Den Versuch einer solchem Rechnung haben neulich Ssamojlowitsch und Goriunow 17 ausgeführt; sie untersuchten den Einfluss von Ionen auf die Assoziation der Wassermoleküle. Die Autoren betrachten diesen Einfluss als eine Änderung der statistischen Verteilung, weshalb der Bedingung des Minimums der freien Energie eine Verminderung der Wasserassoziation entspricht. Grund der Gleichung von Debye und Hückel berechnen die Verfasser die potentielle Energie des Dipols gegen die Ionenatmosphäre und suchen die Bedingungen, bei denen $\delta F = 0$ ist.

Hierbei wird leicht die Gleichgewichtskonstante für den Assoziationsprozess gefunden. Die abgeleiteten Gleichungen werden zur Berechnung auf Grund der Intensitätsmessungen von Raman spektren (nach den Experimenten von Ramankrischna Rao) benutzt,man bekommt dabei für das Gleichgewicht 2H₂O = (H₂O)₂ bei 4° C $K = 4.57 \cdot 10^{21}$; bei 38° C $K = 11.38 \cdot 10^{21}$. Diese Daten wurden zur Erklärung der Wärmekapazität des Wassers, welche theoretisch

(russ.) 4, 892 (1934).

¹⁵ Bernal a. Fowler, J. chem. Phys. 1, 515 (1933).
16 Debye u. H. Sack, Theorie d. elektrischen Molekulareigenschaften, Handb. d. Radiolog. Bd. Vl/2, Leipzig 1934, S. 117.
17 Ssamojlowitsch u. Goriunow, J. f. exper. u. theor. Phys.

gleich 12,5 sein müsste, verwendet; nimmt man an, dass die Differenz $\Delta=18-12,5=5,5$ Cal. auf die Dissoziation der Polymere fällt, so bekommt man aus den oben angeführten Gleichgewichtskonstanten für Δ den Wert 8,75 Cal., welcher von derselben Ordnung wie die obige Zahl (5,5) ist.

Debye und Sack betonen, dass die kryoskopischen Messungen für die Untersuchung der Assoziation sehr wichtig sind. Mehrmals haben wir gleichzeitig mit anderen Methoden uns auch der Kryoskopie und Ebulioskopie zugewendet. In unseren letzten Arbeiten haben wir die Solvatation einer Substanz AB durch den Solvatisator S in einem indifferenten Lösungsmittel (in unserem Falle Benzol) untersucht. Es ist z. B. sicher, dass die Lösungen von AsCla und AsBra in Benzol gelöst, keine elektrische Leitfähigkeit besitzen, das Molekulargewicht dieser Substanzen bleibt normal; die SbCl₈- und SbBr₈-Moleküle zeigen eine kleine Assoziation und auch keine Leitfähigkeit. Die kryoskopische Untersuchung 18 des Systems AsCl₈ — C₆H₆ — - Dimethylpyron zeigte, dass die Zugabe von Dimethylpyron zu der Benzollösung von AsCl₃ trotz dem Entstehen der Ionisation (die Lösung wird dabei leitend), eine Abnahme der Depression verursacht: so bekam man z. B. für eine Lösung, welche zuerst aus 10,56 g C_6H_8 und 1,267 g AsCl₃ bestand, und die Depression $\Delta = 3,383^{\circ}$ zeigte (was einem Molargewicht von AsCl₃ = 181,4 anstatt des theoretischen 181,3 entspricht) nach der Zugabe von 0,0853 g $C_7H_8O_2$ einen Abfall der Depression bis $\Delta = 3,103^\circ$. Es entsteht also dabei nicht nur eine Solvatation, - sondern auch eine Assoziation, oder, richtiger gesagt, eine Autosolvatation.

Diese letzte Erscheinung wurde bei den Temperaturen unserer weiteren ebulioskopischen Untersuchungen 19 nicht beobachtet. In der letzteren Arbeit wurde jedoch mit grosser Wahrscheinlichkeit die Solvatation festgestellt, da die Depression der Benzollösung, welche gleichzietig $AsCl_3$ (oder $AsBr_3$) und $C_7H_8O_2$ enthielt, immer kleiner war, als die theoretisch berechneten Werte für den Fall, wo keine Assoziation, Solvatation oder Dissoziation in der Lösung stattfinden sollte. Ganz anders zeigte es sich bei SbCl $_3$ - und SbBr $_3$ -Lö-

W. Finkelstein, J. russ phys.-chem. Ges. 62, 168 (1930).
 W. Finkelstein u. P. Kurnossowa, J. allg. Chem. (russ.)
 132 (1933).

sungen; es bilden sich in diesen letzteren Fällen Autosolvate und wahrscheinlich sogar Komplexe beständiger Zusammensetzung, welche vom Anion unabhängig sind.

Die neusten Untersuchungen ²⁰, welche wir jetzt zusammen mit I. Nowossielsky ausgeführt haben, sind eine Fortsetzung der früheren zwei Arbeiten. Im Zusammenhang mit den Untersuchungen von M. Ussanowitsch ⁷ haben wir Äther als Solvatisator für dieselben Halogenide gewählt. Einige Versuche, die Solvatation durch Leitfähigkeitsmessungen in diesem Falle zu verfolgen (wir untersuchten die Änderung der elektrischen Leitfähigkeit als Funktion der Zugabe von Äther zu der Benzollösung von AsCl₃), zeigten, ebenso wie es bei analogen Versuchen mit Dimethylpyron war ¹⁸, keinen Erfolg. Die Knicke an den Leitfähigkeitskurven waren von deren Anfangskonzentration (AsCl₃ in C₆H₆) und der Temperatur abhängig. Bei den kryoskopischen Versuchen haben wir die Benzollösungen von AsCl₃, AsBr₃, SbCl₃ mit (C₂H₅)₂O als Solvatisator, AsCl₃ und SbCl₃ mit Essigsäure und SbCl₃ mit Nitrobenzol untersucht.

Die Depression der Lösungen, abhängig von der molaren Beziehung des zugegebenen Solvatisators [z. B. $(C_2H_5)_2O$] zum Elektrolyt (z. B. AsCl₃) also vom Molenbruch:

$$\frac{\text{Mol } (C_2H_5)_2O}{\text{Mol AsCl}_3},$$

ergibt eine lineare Funktion. Dabei liegen, wie aus der Tabelle 1 zu sehen ist, auch hier, ebenso wie bei den Versuchen mit Dimethylpyron, die experimentellen Daten immer niedriger als die theoretischen, — d. h. unter der Annahme, dass keine Assoziation, Solvatation oder Dissoziation stattfände — berechneten Daten. Die Abwesenheit in allen diesen zahlreichen Versuchen von Knicken oder Biegungen an den entsprechenden Kurven spricht dafür, dass in diesen Fällen eine Bildung von Solvaten mit veränderlicher Zusammensetzung gefunden worden war, — also solcher Solvate, die den Stöchiometriegesetzen nicht unterworfen sind.

Die Untersuchungen der Ramanspektren der ätherischen Lösungen

²⁰ Noch nicht veröffentlicht.

Tabelle 1

a) $AsCl_3-C_6H_6-(C_2H_5)_2O$ $C_6H_6-10,74$ g; $AsCl_3-0,452$ g

Versuch	(C ₂ H ₅) ₂ O	Mol (C ₂ H ₅) ₂ O pro Mol AsX ₃	Depression	
No			exper.	theor.
-19V tel t) 50-H	Brader (BARROKE) Brader (BARROKE)	ente consensor
1 1	4 1 2 <u>11</u> 14	La convert	1,211	india commis
2	0,1313	0,71	2,004	2,057
3	0,1784	0,96	2,266	2,363
4	0,2094	1,13	2,452	2,561
5	0,2896	1,57	2,894	3,087
6	0,3652	1,98	3,384	3,563
7	0,4334	2,35	3,505	4,009
8	0,4902	2,66	4,027	4,371
9	0,5568	3,02	4,477	4,799

b)
$$AsBr_3 - C_6H_6 - (C_2H_5)_2O$$

 $C_6H_6 - 14,03$ g; $AsBr_3 - 0,494$ g

to be all deads could five their

Versuch No	(C ₂ H ₅) ₂ O	Mol (C ₂ H ₅) ₂ O pro Mol AsX ₃	Depression	
			e xp er.	theor.
Cattager	exact are	and the same	rigarout islat	easiet asma
1011	t no		0,551	gad ,nine no.
2	0,0582	0,50	0,828	0,838
3	0,1012	0,87	1,010	1,053
4	0,1424	1,22	1,153	1,254
5	0,2036	1,75	1,395	1,554
6	0,2438	2,10	1,511	1,763
7	0,2972	2,56	1,706	2,018
8	0,3684	3,17	1,983	2,369
11111	1.082 22 11	l p. seure	l midiume)	9/2

von AsCl₃ und AsBr₃ ²¹, sowie auch von SbCl₃ ²², welche in der Tabelle 2 teilweise angeführt sind, haben kein Beweismaterial für die Bildung neuer chemischer Bindungen geliefert, sie zeigten auch keine (oder sehr kleine) Verschiebungen der Ramanlinien. Diese Verschiebungen konnten eine Verminderung der Bindungskräfte in den Molekülen zeigen, wie es für Alkohollösungen A. Sack und A. Brodsky ²³ gefunden haben. Gleichzeitig kommen fast in allen Fällen die Frequenzen der Elektrolytmoleküle (AsCl₃, AsBr₃, SbCl₃) deutlich zum Ausdruck; doch werden die entsprechenden Linien in verdünnten Lösungen sehr schwach und verschwinden sogar teilweise.

An dieser Stelle möchten wir bemerken, dass die Lösungen von $SbCl_3$ in Benzol, für welche eine Komplexverbindung von Menschutkin ²⁴ gefunden wurde, neue Ramanlinien zeigten. Vorläufig schätzen wir diese neuen Frequenzen auf $\nu=477$ und $1236~{\rm cm}^{-1}$.

Im Lichte der vorgetragenen Ergebnisse unserer Untersuchungen, sowie der schon früher von mehreren Forschern gefundenen Tatsachen, scheint es uns klar zu sein, dass das Solvatationsphänomen nicht nur durch chemische oder nur physikalische Theorien beschrieben werden kann. Befindet sich ein Dipolmolekül im Felde eines Ions, so werden wir in Abhängigkeit von einer Reihe von Bedingungen, — von der Polarisationskraft des Ions (also von seiner Ladung und Durchmesser), von der Grösse des Moments des permanenten Dipols der solvatisierenden Moleküle, von der Polarisierbarkeit der letzteren und auch von dem Einflusse des entgegengesetztgeladenen Ions, eine mehr oder wenig innige Bindung zwischen Ion und Dipolmolekül haben. Diese Zusammenwirkung der Ionen und Dipole kann verschieden sein, beginnend von einer Orientierung der letzteren im elektrischen Felde der erstern mit einer grösseren oder kleineren Verminderung der kinetischen Freiheit also der Aktivität oder effektiven

²¹ W. Finkelstein u. P. Kurnossowa J. physik. Chem. (russ.) (im Drucke).

M. Aschkinasi, P. Kurnossowa u. W. Finkelstein—noch nicht veröffentlichte Untersuchungen.
 A. M. Sack u. A. I. Brodsky, Acta Physicochimica URSS 2.

^{215 (1935).} 24 B. Menschutkin, J. russ. phys.-chem. Ges. 43, 393 (1911).

Tabelle 2 Ramanspektren der Ätherlösungen

		一般是他们		
1		297823 2975 2975 2977 2977 2981	2975 2972 2981 2976 2977	2982 2980 2972 2976 2976 2973 2977
		2930 2925 2925 2930 2930 2930	2929 2928 2928 2928 2928 2928	2930 2930 2930 2930 2930 2928 2928 2929
		2866 2863 2863 2866 2866 2866 2868 28670	2863 2866 2860 2862 2862 2862 2862	2862 2857 2859 2865 2866 2865 2869 2869
	ø	1455 1432 1448 1449 1441 1446	1454 1454 1458 1458 1458	1454 1456 1450 1451 1451 1458
	Frequenzen des Äthers cm-1	1270 — — 1278 1277 1281	1:111:1	1281 1281 1276 1274 1274 11, S. 311
	zen des	1148	111111	1043 — 128 1040 — 128 1036 1147 127 1039 1144 127 1046 1146 — 127 1042 1148 127 a n Effekt,* 1931, S.
gen	requen	1028 1041 1044 1037 1038	1044 1042 1047 1043	1043 1040 1036 1036 1048 1048 m a n Eff
a m a nspektren der Atherlösungen	• I	927	111111	837 934 837 927 832 926 839 927 845 926 842 921 843 925 m e k a 1 - R a и
Athe		840 838 838 846 846	843 842 850 850	837 837 832 839 845 845 843 843 843 843
en der		540	144444	1 8 1 188 1 88 Set
spektr		438 438 443 443 443 443	1140 1145	429 440 54 433 438 440 55 440 56 440 56 56 66 66 66 66 66 66 66 66 66 66 66
man	gelő-	409 405 405 405 406	PILITI	36024 359 362 361 359 362 362 366 K o h I
٣	zen der g Substanz cm-1	373 372 372 372 369 371	273 ²⁴ 277 276 276 278 278 277	320 321 322 320 320 320 322 316 321 321 321
	Frequenzen der gelö- sten Substanz cm ⁻¹	194 194 192 193 194 194	129 129 128 128 131 131	165
	Frequeste	156 158 158 156 159 159	98 98 98 98 100	134 131 131 131 131 131 131 131
	Konzen- tration der Lö- sung	72,0 72,0 19,3 11,4 11,4	29,6 29,6 29,6 11,4	25 25 25 25 13,6 13,6 5,8 5,8
0.00	Ver- such No	117555	1-==5>2	III III IIV V VI VIII VIII
	Gelöste Substanz	AsCl ₃	AsBr ₃	SbCl ₈

Konzentration der Dipole bis auf völligen Verlust ihrer unabhängigen Existenz und also der Bildung chemischer Verbindungen. Die Verminderung der Aktivität der Dipole im Falle der oben betrachteten ternären Systeme wird in den osmotischen Eigenschaften der Lösung zum Vorschein kommen. Doch ist zu bemerken, dass die Komplexbildung, wie es der Fall von SbCl₃ mit C₆H₆ gut illustriert, noch keine Dissoziation bedeutet, da in diesem Falle die deformierten Benzolmoleküle nicht an die Ionen sondern an die SbCl₃-Moleküle gebunden sind.

Bei der Untersuchung eines Systems — z. B. $\operatorname{AsCl_3} - (C_2H_5)_2O$ — $-C_6H_6$ — muss also nicht nur die elektrostatische Zwischenwirkung der Ionen, sondern auch der letzteren mit den Dipolmolekülen des Solvatisators sowie des undissoziierten $\operatorname{AsCl_3}$ -Teils in Betracht gezogen werden.

Der osmotische Druck π , welcher proportional der Depression ist, wird jetzt aus folgenden Teilen zusammengesetzt sein:

$$\pi = ng_{+-}\pi_{0+-} + g_N\pi_{0N} + g_S\pi_{0S}^{25},$$

wo π_0 der theoretische osmotische Druck ist, welcher durch die entsprechende Teilchengattung bestimmt wird, g—der osmotische Koeffizient; die Indizes: (+—) zeigen den dissoziierten Teil (n—Zahl der Ionen pro Molekül), N—die undissoziierten Moleküle (z. B. AsCl₃) und S—die Solvatisatormoleküle [z. B. (C_2H_5)₂O]. Die weiteren Untersuchungen der R a m an spektren und der osmotischen Eigenschaften solcher Lösungen wird uns die Möglichkeit schaffen, diese Überlegungen noch zu entwickeln.

 $^{^{25}}$ Wir nehmen an, dass der osmotische Druck π sich additiv aus drei Teilen, von denen jeder durch die entsprechende gelöste Teilchengattung vertreten wird, zusammensetzt; es ist also: $\pi=\pi_1+\pi_2+\pi_3$; π_1 ist der Druck einer Lösung, die nur die Ionen enthält, welche dieselbe Aktivität haben wie in der untersuchten Lösung, $-\pi_1=ng_+-\pi_0+\dots;g_+$ ist ein Koeffizient, der die Wirkung der Dipole auf die Ionen sowie der Ionen aufeinander enthält; π_2 ist der osmotische Druck einer Lösung, welche nur die Dipole der nichtdissoziierten Moleküle (z. B. AsCl3) derselben Aktivität wie in unserer Lösung enthält: $\pi_2=g_N\cdot\pi_{0_N}$ und ganz analog für die Moleküle des Solvatisators ist $\pi_3=g_S\pi_{0_S}$; die Koeffizienten g_N und g_S enthalten in sich also die Wirkung der Ionen auf die Dipole und der letzteren aufeinander.

Im Falle der Solvate und Komplexe mit apolaren Molekülen kann die Polarisationskraft der Ionen so gross sein, dass solche Moleküle wie Br_2 in die Komplexbildung kommen. Als Beispiel können die oben zitierten Arbeiten über das Ion P^{+++++} in den Bromlösungen von PBr_5 und PCl_5 dienen. Der Vortragende hat gezeigt 26 , dass in den Bromlösungen von PBr_5 die Summe der Überführungszahlen: $n_k + n_A = 0.625 + 0.720 = 1.372 > 1$, — was durch die Solvatation sowie Autosolvatation (kryoskopisch schon früher gezeigt) bedingt ist. Die Bindung von $5\mathrm{Br}_2$ durch PCl_5 ist schon oben erwähnt worden 13 . In dem letzten Falle z. B. scheidet sich bei der Elektrolyse Chlor an der Silberanode aus, was auf die Dissoziation nach dem Schema: $(\mathrm{P} \cdot 5\mathrm{Br}_2)^{+++++} + 5 \cdot \mathrm{Cl}^-$ hinweist. Denselben Fall haben wir in den Gustawsonschen Komplexen $\mathrm{AlBr}_8 \cdot 3\mathrm{C_6H_6}$ und $\mathrm{AlBr}_8 \cdot 3\mathrm{C_7H_8}$, welche elektrochemisch durch $\mathrm{Neminsky}$ und W. $\mathrm{Plotnikow}$ untersucht wurden.

Zum Schluss möchte ich noch hervorheben, dass die Bildung leitender Systeme im Falle der beiden Waldenschen Elektrolytgruppen qualitativ identisch is: es bestehen nur quantitative Unterschiede, wobei die einen im geschmolzenem Zustande vollständig dissoziiert sind, die anderen in den meisten Fällen nur vernachlässigbar wenig. Wir haben dabei die Hypothese der zwei Formen der dissoziierenden Substanz benutzt, um uns vom Dualismus in der Elektrolyttheorie zu befreien. Bei der Betrachtung der Zwischenwirkung des Lösungsmittels oder des Solvatisators mit dem Elektrolyt haben wir alle Fälle von der Bildung der Komplexverbindungen an bis zur Solvatation durch reine Orientierung der Dipole durch das Ion in ein Schema gebracht. Wir haben auf die Rolle der Deformationspolarisation, besonders in den Fällen, wo eine Bindung solcher apolarer Moleküle wie Br₂, C₆H₆, C₇H₈ u. s. w. stattfinden, hingewiesen.

Wir haben den Begriff der Aktivität der solvatisierenden Dipole ²⁸ verwendet; dabei haben wir die entsprechenden Koeffizienten (z. B. g),

W. Finkelstein, Z. physik. Chem. 125, 229 (1927).
 Neminsky u. Plotnikow, J. russ. phys.-chem. Ges. 40, 391 (1908).

<sup>(1908).

&</sup>lt;sup>28</sup> Siehe: H. Ulich, Flüssigkeiten u. Lösungen, Eucken-Wolf, Hand- u. Jahrbuch d. chem. Phys. Bd. 6/11, S. 195, Leipzig 1933.

als mittlere statistische Korrektur wegen der Wirkung zwischen den Dipolen und Ionen und wegen der dabei entstehenden Änderung der Verteilung der entsprechenden Moleküle in der Flüssigkeit betrachtet.

Ukrainisches Institut für Physikalische Chemie namens L. Pissarjewsky, Dnjepropetrowsk.

(New and Colombia Modella of the Colombia