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A general mechanism of nonlinear saturation of instabilities in flowing films is described using the
Rayleigh-Taylor instability as an example. The combined action of flow shear and surface tension
is the essence of the saturation mechanism. As a result, the streamwise perturbations of the
interface that would rupture a stagnant film do not rupture a film flowing in a certain range of

shear rates.

We have studied the stability of liquid films flowing un-
der heavier fluids, with respect to disturbances independent
of the spanwise coordinate. Such a film, if stagnant, would
rupture as a consequence of the Rayleigh-Taylor instabil-
ity.'~* Consider a film flowing not too fast [i.e., with a Reyn-
olds number small in a sense specified below, see Eq. (10)]. Its
linear stability properties do not differ essentially from those
in the stagnant case. Longwave perturbations of small am-
plitudes do grow (exponentially) at first. However, we find
that the flowing films (in a certain range of shear rates) can
sustain without rupture the perturbations which would
break up the films in stagnant situations. The (Rayleigh—
Taylor) instability of the interface saturates at some level
lower than the unperturbed film thickness. This is a result of
a nonlinear flow-induced and surface-tension-assisted mech-
anism described below which occurs in a variety of film flows
with different destabilizing factors.

Consider for simplicity the case of {two incompressible)
fluids with equal viscosities it = £, =pu, where u - relates to
the lower fluid (“film”) and i, to the upper one {“liquid™).
Theliquid (of thickness 4, =H )is assumed to be thicker than
the film (of thickness 4 .=h),

h<H, (1)
and more dense,
PL>Pr- (2)

We choose the reference frame of the unperturbed interface.
The interface occupies the plane y = 0 in our rectangular
Cartesian coordinates. The film is in no-slip contact with a
solid plate below it, at y = — A. The plate moves in the x
direction at a (constant) velocity U,. The constant gravita-
tional acceleration is denoted as g.

In the primary velocity distribution then the vertical
components are ¥ = ¥, = 0. The horizontal ones U, and
U, are x directed and vary only in the vertical direction:

Ue =Wy, U, =Wy, (3)
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where
W=U,/h=U,/H. (4)

Here U, is the upper plate velocity, U, = U, (H).

Consider the equations and boundary conditions for the
(streamwise) perturbations of the velocities u,, (¢, x, y) and
vp (8, x, ), the pressures p., (¢, x, y), and the interface eleva-
tion 77{t, x). We restrict consideration to primary flows which
satisfy a number of conditions: some nondimensional groups
of their parameters (which are specified below) have to be
small. This allows us to neglect certain terms in the perturba-
tion problem in order to arrive at a closed-form asymptotic
equation for the interface evolution.

Specifically, the assumptions are as follows. We consid-
er thin films, in the sense that the ratio x of the film distur-
bance y scale to the x scale is small,

k=h/L<]l, (5)

where L is the characteristic perturbation x scale of our
problem; we will see below that it can be expressed in terms
of the unperturbed system parameters as

L=[o/glp. —pr)]'*=(0/8)'"", (6)

where o is the surface tension, 5=g(p, — p,). [It will be
shown below that L is of order of the critical wavelength for
infinitesimally small perturbations. The shorter-scale per-
turbations die out, while the longer-scale perturbations are
(linearly) unstable—and thus subject for a nonlinear theory.]
The next condition (which guarantees that the film y scale is
much shorter than that of the liquid) was actually stated
earlier, Eq. (1):

B=h/H<«]1. (7)
The next two small parameters, designated as € and a, are
needed inasmuch as we would like to neglect the time deriva-
tive terms in the perturbation Navier—Stokes equations and

the “inertia” terms (and thereby retain only the viscous and
pressure terms). The parameter € has the meaning of an ef-
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fective Strouhal number for the film perturbations (which is
a measure of the ratio of the time-derivative terms to the
inertial ones): it can be defined as

e=L /TU, <. (8)

Here T is the time scale of the problem, which can be ex-
pressed, as will be shown below, as

T=uo/h>5°. 9)
[As a matter of fact, the time-scale expression (9) follows
already from the linear perturbation theory.] Finally, « is

essentially the film perturbation Reynolds number and can
be defined as

a=U,h*/Lv<l, (10)

where v=u/py.

In addition we make some assumptions as to the magni-
tude of the perturbation solutions, which can be justified a
posteriori (see also Ref. 4). First, the interface elevation 7 is
assumed to be small in comparison with the film thickness A:

n/h<l. (11)

Second, the perturbation velocity u is assumed to be smail
in the following sense:

R A AP (12)

Using the conditions (5)-(12), many terms in the (generally
speaking, nonlinear) perturbation equations can be estimat-
ed to be negligible to leading order. [For example, the condi-
tion (5) allows one to neglect the x derivatives in the film in
comparison to their y counterparts.]

As a result, to leading order, the asymptotic perturba-
tion problem assumes the following form.

The film Navier-Stokes equations are {in what is, in
effect, the “lubrication approximation” and the Stokes ap-
proximation combined)

ap
Pr _o, (13)
dy
and
d? g,
g ur _ 1 %r ) (14)
dy u Ox
The (exact) incompressibility equation is
a a
“r + Pr _ 0 (15)
dx ay
The interface conditions assume the form
du
=0 (y=0) (16)
dy
(tangential stress condition),
A
= —0n —0— 17
Pr Ui E (17)
(normal stress condition), and
ag U, oan
ST 4L o2ty 18
a " h Tax Fle %)

{(kinematic condition).
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[In Eq. (18), we have used the following approximations for
Ur(n) and vg|,_,: Up(n)=Up(0) + (@Ur/3y)Om = (U,/
h)m,and ve|,_, =vi|, . o; and we have neglected the term
(up|, _ , NON/0x)=(ur|,_ o ){(d1/0x) in comparison with the
second term in Eq. (18), by virtue of Eq. (12).] Also, we make
use of the following boundary conditions at the lower plate:

up =0 (y= —h) (19)

and
(y=—h) (20)
(the upper-plate counterparts are ¥, =v, =0,y = H).
Having formulated the problem (13)—20), one can pro-
ceed as follows to express v in Eq. (18) in terms of % (and
thus obtain the equation for the interface elevation in closed
form).
It is easy to find from Egs. (15) and (20) the expression

duy
Vily—o = — o dy. (21)

v =0

One can then express u,. in terms of p, by solving Eq. (14)
with the two boundary conditions, Egs. (19) and (16), and
making use of Eq. (13). Substituting this solution into Eq.
(21), vy is expressed in terms of p,. With this expression, Eq.
(18) gives

éz’—+W gl—f—azp‘rz )
ot x 3u ox?
Since p is already given in terms of 7 by Eq. (17), we arrive at
the (central for this work) equation® for the interface evolu-
tion:

TN BT &)

ot Ox  3u\ Jx* ox* ‘

Let us analyze the interface evolution described by this equa-
tion. When 7 is very small, the nonlinear term is negligible.
The linear equation

(22)

an k3 ( dy %y )
ar 3u\ Ix? te ox* 24)
leads to the dispersion relation
o = i(h>/3u)k 8 — ok ?), (25)

for linear modes 7 <e ~ “** ** It shows the Rayleigh-Tay-
lorinstability for the long waves k * < 8 /0. Sothe characteris-
tic length L, Eq. (6), is of the order of the critical wavelength.
Equation (25) shows the growth-rate maximum at a wave-
length of the same order as L and the inverse maximal
growth rate is of the order of 7, Eq. (9). But if % were to
grow—due to the destabilizing factor [§ term in Eq. (24)}—
beyond ke, i.e., if 9> he, then the linear terms in Eq. (23)
could be neglected, as one can show easily. This step results
in the well-known’ nonlinear equation

/] I

ot + W Ix
The process it describes is the distortion of the “wave pro-
file” 5(¢, x). It can be expressed in the following words (in our
“interface interpretation” of the equation): every point of the
interface moves in the {horizontal} x direction with velocity
proportional to that point’s elevation 7. Thus, the points

=0. (26)
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where 7 = 0 (“zeroes”) do not move, while the points of
maximal elevation move faster than all other points. Let the
initial interface profile be symmetric in the interval between
two neighboring zeroes [e.g., %{0,x) « sin(x/1), 0<x<(7/2)I,
{2 L ]. In the subsequent evolution the symmetry is lost since
the maximum moves farther from one of the zeroes and clos-
er to the other one. The latter would have been passed in a
finite interval of time. However, in our case this process of
steepening of the forward faces of the interface profile does
not result in the eventual breakup, because the surface-ten-
sion term in Eq. (23), which was negligible initially, becomes
important when the steepening process has advanced suffi-
ciently far. Indeed, as was mentioned above, the elevations
do not change during the process of steepening described by
Eq. (26). In contrast, the interface curvatures grow, i.e., the
effective x scales contract. Hence, the surface-tension term
containing the highest-order x derivative grows faster than
other terms. Due to the enhanced action of surface tension,
excessive elevations are reduced, the steepening process is
slowed down and later reversed. But if the elevations become
small (7 <¢he), then gravity [§ term in Eq. (23)] prevails and
the elevations grow again. As a result of the combined action
of these three factors—destabilizing gravity, flow-induced
scale contractions, and stabilizing surface tension—finite-
amplitude oscillations set in, such that all the terms in Eq.
(23) are of the same order. This condition yields the time
scale T [Eq. (9)], x scale L [Eq. (6)], and a small elevation 7,
1/h ~¢€ [cf. Egs. (11) and (8)].

These conclusions from physical analysis are consistent
with the results of the numerical investigation® of a similar
equation.

We would like to emphasize that the physical interpre-
tation of the saturation mechanism given here is applicable
to a wide class of film flows. The saturation mechanism does
not depend on the nature of the initial destabilizing influence
(here gravity) although it demands that some destabilizing
factor be present. The same process of shear steepening of
the forward faces of interface profiles—that generates large
curvatures and hence, through surface tension, significant
pressure perturbations causing saturation—can occur in a
wide variety of flows. Indeed, the same mechanism can be
found in free-surface film flows down planes and cylindrical
surfaces®” (although those authors®® consider neither the
nature of saturation nor the question of film rupture), where
gravity is destabilizing. For the plane “liquid-film” systems
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like those considered in the present work but with fluids of
nonequal viscosities in Poiseuille-type flows, there is destabi-
lization due to the difference of viscosities as such,'® and the
saturation mechanism is present as well. We intend to con-
sider this case in detail elsewhere, as well as two-layer Poi-
seuille-type film flows inside cylindrical capillaries. In the
latter case it is interesting that the surface tension plays two
contrasting roles: on one hand, it is a linearly destabilizing
factor and on the other hand, it takes a stabilizing part in the
nonlinear saturation mechanism. Elsewhere* we find the
same mechanism in very thin films # S 10~ cm, where the
van der Waals molecular forces take over the destabilizing
role which gravity plays in the Rayleigh-Taylor instability.
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