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Abstract 

The basic results of quantum theory of chemical reaction kinetics in polar medium are 

reported. The general features of activation energy dependence on energetic characteristic 

of initial and final states of the system (generalized Bronsted rule) is discussed. General 

method of calculating activation energy of reaction in polar liquid is formulated. 

The reaction carried out in polar solvents are of great importance for 
chemistry. A peculiar feature of most of these reaction is a strong effect 
of the solvent on the process rate. This effect is due to two reasons. First, 
in some cases reagents can form with the nearest molecules of the medium 
a strong solvation shell, which is often called the near coordination sphere. 
Second, the interaction energy of the charge with the solvent outside the 
near coordination sphere can amount to several kilokalories per mole. Thus, 
the charge redistribution during the reaction will lead to a change in the 
polarization of the medium, i. e., in the mean dipole moment of unit volume. 
Therefore, the reaction heat will contain the difference of electrostatic ener­
gies of solvation of initial and final states. Then, since in many cases cor­
relations between the reaction heat and the activation energy are observed!), 
the interaction of reagents with solvent should make a considerable con­
tribution to the activation energy. The following reactions can serve as 
examples of reactions involving a considerable change in the solvent polari­
zation: 

Fe (CN)6 3+Fe (CN)6-4~Fe (CN)6-4+Fe (CN)6 3 

HN (CH3)2 + CH3COOH ~ HzN (CH3)2 + CH3COO-

( I ) 

(II ) 

*) Institute of Electrochemistry, Academy of Sciences of the USSR, Moscow, USSR. 
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~ 

CH3 -CH -CH3 ~ CH2 -CH2 -CH3 (III) 

It should be emphasized that even if the charge state of reagents in reaction 
(III) does not change, a significant redistribution of the electron density takes 
place in reacting molecules. 

The simplest purely electron transfer reactions involving no change in 
chemical bonds were considered in terms of the absolute reaction rates 
theory by R. A. MARcus.2.3) However, the method developed in these papers 
cannot be directly used in calculating the rate constants of reactions in­
volving a change of the internal structure of reagents. Much more effective 
proved to be the quantum theory of purely electron transfer reactions, 
developed in previous papers4

-7), which was later extended to the case of 
more complex reactions.s-14) Below are set forth the main physical assump­
tions and conclusions of this theory. 

First we shall consider a solvent model. 12) In the theory being presented 
the solvent is described by polarization fluctuating with time, which can be 
expressed as a set of harmonic oscillators with frequencies Wi and normal 
coordinates qi. Though the potential energy surface is multidimensional, we 
shall interpret the results on schematic one-dimentional potential curves, 
considering q as being a certain generalized coordinate describing the solvent 
state (see Fig. 1). When reacting particles are introduced into the solvent, 
the interaction of their charges with polarization leads to a shift of the 
equilibrium coordinate q=O to a new position qi=qiO and to a change of 
the equilibrium energy in the total system (medium + reagents). The shift 

Fig. 1. 
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of the equilibrium coordinate qiO and the equilibrium energy Ji depend on 
the charge distribution in the reacting particles and differ in initial and final 
states. (Curves i and f in Fig. 1, respectivly). For the model under con­
sideration all the properties of the polar solvent can be expressed in terms 
of the complex dielectric permeability e (k, w), determining the nature of 

propagation in the medium of polarization waves with the length A = ~~ 
(J~-the wave vector) and the frequency w. In particular, the oscillator 
frequencies Wi can be determined from the imaginary part of the dielectric 
permeability 1m e (k, w). Though the calculation was carried out for the 
whole frequency spectrum, for simplicity, below we shall make use of only 
one effective frequency wo0 In the order of magnitude it coincides with 
the reciprocal Debye relaxation time r, which for water is about 10-11 sec 

(wo ....... + ....... l0. 11 see-I). Moreover, if e (k, w) and the charge distribution in 

reagents and products are known, it is possible to estimate the basic pa­
rameter of the theory -the energy of reorganization of solvent polarization 
E.12). Unfortunately, at present there are experimental data available only 
for e (0, w), i. e., in the range k~O. However, for reactions involving 
significant solvent reorganization at small distances, e.g. for small radius 
ions, the dependence of e on k is of essential importance. In another 
limiting case, when reorganization of the medium at small distances is not 
important, as e.g. for large ions, E. can be written as 1Z

) : 

E8 = :rr )[l)i- Df]2 dv , 

1 1 
c=---

eo es 

( 1 ) 

where eo and e8 are optical and static dielectric constants, Di and Drinduc­
tions set up in the medium by reagents and products. Though in the 
general case it is impossible to obtain accurate values of E8 by means of 
formula (1), it can be used for rough calculations. It should be stressed 
that an accurate expression for Es obtained in previous paperl2l, as well as 
the approximate formula (1), takes account of the essential dependence of 
the reorganization energy on the charge redistribution in the course of the 
reaction. Owing to this circumstance, it is possible in comparing various 
reactions to draw quantitative conclusions regarding the value of E8 • Thus, 
for example, it can be said that for a number of reactions involving the 
same charge redistribution E8 will have the same value. Therefore, for 
a given series of reactions E., should be treated as a single empirical pa-
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rameter and determined experimentally. 
Let us pass now to the discussion of the main kinetic laws for chemical 

reactions in polar liquids. 12
) In the general case, the system consist of 

a solvent and reacting particles. In the course of reaction the polarization 
state of the solvent can change as well as the electron states of reacting 
particles and their molecular structure (including the deformation of valence 
bonds, their breaking or formation). 

The conventional method of calculating the rate constant in the theory 
of absolute reaction rate is known to involve the calculation of the surface 
of the system total potential energy, i. e., of the electronic term U e • In the 
case of reactions in a polar medium, the term Up represents the total energy 
of the system at fixed values of the coordinates {q}, describing the polariza­
tion state of the solvent and the coordinates {R}-the atoms participating in 
the reaction. In the absolute reaction rate theory it is assumed that the 
motion of the system in the course of reaction along the surface u' (R, q) 
is classical. Actually, this description corresponds to the subdivision the 
system into two subsystems: the quantum (electrons) and the classical (all 
the other particles). It should be stressed that the assumption that all the 
intramolecular degrees of freedom can be treated as classical which is made 
whithin the framework of the absolute reaction rates theory, is quite un­
founded and at variance, e. g. with the well-known experimental data on 
the temperature dependence of the heat capacity of some molecules. IS) 

A quantum calculation performed under rather general assumtion about 
the nature of chemical reactions in polar liquids has shown that the classical 
or quantum behavior of any degree of freedom is essentially determined by 
the exitation energy value 11E, i. e., by the frequencies of the intramolecular 
vibrations (11E = nmm ) and characteristic frequencies of solvent polarization 
fluctuations (11Eo= "limo). It follows from the theory that a vibrational degree 
of freedom can be considered to be classical if the excitation energy cor­
responding to it is small compared to kT 

11Ee10s = "limelOS < kT (2 ) 

The degrees of freedom for which IS valid the inverse inequality 

11Equont = "limquont > kT ( 3 ) 

should be considered as being quantum. Thus, e. g. in most chemical reac­
tions proton acts as a quantum particle, since the frequencies of proton 

vibrations in chemical compounds satisfy the inequality (3) m ___ l014 sec-1> k[. 
The specific feature of reaction in polar media is that at least one clas-
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sical subsystem participates in these processes, this being the polar solvent, 
and therefore the dependence of the reaction rate constant on the tempera­
ture is of an activation nature. As is shown by a quantum-mechanical 
calculation12

,}4), the expression for the reaction rate constant can be written as 

( 
E,::,m,) 

k = 1: Am,m' exp ----w-
'111,m' 

( 4 ) 

where m and m' are the numbers of excited levels of the quantum syb­
system in the initial and final states, respectivly, E,;:,m' -the partial activation 
energy, which is practically independent of temperature (see Fig. 4) and the 
values of Am,m' depend on temperature according to the power law. The 
preexponential factor will be considered in more detail below. An important 
conclusion of the theory is that the reaction rate constant depends on the 
difference .JJ=Jf-J., where Ji and Jf are the minimal energies on the 
potential surfaces of initial and final states, corresponding to the unexcited 
levels of the quantum subsystem (see e.g. Fig. 1). As will be shown, the 
quantity (- .JJ) actually coincides with the reaction heat. Therefore, the 
dependence of k on .JJ can be treated as a certain generalization of the 
Bronsted rule. It follows from calculation that formula (4), valid for any 
value of .JJ, can be written as 

( 5 ) 

where E" is the effective activation energy, depending on .JJ and the 
reorganization energy of the classical degrees of freedom. 

Another important conclusion of the theory refers to the general nature 
of the dependence of E" on .JJ. Calculation shows that at low enough 
values of .JJ the effective activation energy E" remains constant and equal 
to its minimal value E,,=Emin (Fig. 3). At very large values of .JJ the 
dependence of E" on .JJ is linear: E" = const + .JJ. In the intermediate 
range the E" versus .JJ dependence differs for various processes and will be 
considered in more detail below for some particular cases. 

The method of finding the activation energy in this range is as follows. 
It is necessary to plot the potential energy surfaces for initial and final states 
as a functions of the coordinates of the classical subsystem only, i. e., the 
coordinates corresponding to low frequency vibrations (2)*). These are the 

* I Unlike the absolute reaction rates theory, in the general case these surfaces do not 
represent electronic terms. For some reactions, however, e.g. for simplest electron 
exchange reactions, these potential energy surfaces can coincide with the electronic 
terms of the system. 
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coordinates qi describing the solvent polarization state and some normal 
coordinates corresponding to intramolecular vibrations with frequences less 

than ( k'{), which are known from spectroscopic data. On such surfaces 

the activation energy can be found as the distance from the minimum on 
the initial surface to the minimum ("saddle") point at the intersection of 
initial and final surfaces. 

As the first example let us take the reaction of type (II), assuming only 
proton transfer to occur during the reaction, the other parts of molecules 
remaining essentially unchanged. In this case only the solvent is a classical 
subsystem. Therefore, the initial and final potential energy surfaces are of 
the same form as in Fig. 1, and for E" we can write the expression 

E - (E.+AJ)2 I JI E 
,,- 4E. ' ,d .,;;; • ( 6 ) 

where E. is the solvent reorganization energy, which can be estimated by 
means of formula (1). The value of AJ is equal to the difference of energies 
of the system final and initial states ,dJ = Jf - J i , Jf and Ji containing the 
energies of proton zero vibrations in final and initial states, respectively. It 
should be noted that there is a formal similarity between (6) and the cor­
responding expression for the activation energy in the purely electron 
transfer reaction.5

-
7

) This similarity is due to the fact that both in purely 

electron trasfer and in purely proton transfer reactions the activation factor 
is determined by the reorganization of the solvent alone. However, reactions 
involving not only repolarization of the solvent, but also the rearrangement 
of other classical degrees of freedom are also possible. In these cases in 
addition to E., the total reorganization energy Etot contains the reorganiza­
tion energy of all the other classical degrees of freedom En i. e., 

( 7 ) 

Then the expression for the activation energy can be obtained from (6) by 
substituting formally E. for Etot. To calculate Er it is necessary to make 
use of the spectroscopic data on the frequencies of classical vibrations and 
the structure of molecules. 

The reactions considered above are relatively simple. In a more general 
case in the course of reaction part of the degrees of freedom can change 
from classical to quantum, and vice versa. A reaction of the type AB + C 
~AC+B can be taken as an example of this process. In the initial state 
particle B performs high frequency vibrations in molecule AB (i. e., here we 
have a quantum degree of freedom), where as particle C is in a solvated 
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state in solution, i. e., it behaves on the whole in the classical manner. In 
the course of reaction particle B is substituted by particle C and in the final 
state particle C behaves in a quantum manner, and particle B in a classical 
manner. 

As a second example let us consider a reaction in which due to the 
formation of one chemical bond, a quantum degree of freedom appears and 
a classical degree of freedom disappears. The potential energy surfaces 
being functions of the coordinates only of the classical subsystem, in the 
process under consideration the surfaces of initial and final states have a 
different number of dimentions. These surfaces are shown schematically in 
Fig. 2, where R is the coordinate of a particle which was initially present 

R Fig. 2. 

III the solution and in the course of reaction forms a chemical bond, q-IS 

one of the generalized coordinates describing the solvent state. In this case, 
as shown by calculation22

), the activation energy is of the form 

( 8 ) 

where Er is the reorganization energy, corresponding to the disappearing 
classical degree of freedom. 

An interesting feature of formula (8) is the existence of the minimum 
activation energy of the process Er;:in = Er . 

In the foregoing we always considered the cases where the condition 
jLlJ- Er;:inj ~E8 or jLlJj ~E8) if E;:'in =0, was imposed upon the parameter 
LlJ In what follows the range of LlJ values satisfying this condition will 
be called the normal region. One of the main conclusions of the theory is 
that in the normal region the excited states of the quantum subsystem, such 

105 



106 

E. D. GERMAN et al. 

as proton, do not participate in the process, and the proton performs the 
transition from unexcited initial to the unexcited final state (Fig. 4a). In the 
case when JJ> E8 (this region will be called "barrierless") a contribution to 
the rate constant is made by the transitions involving the participation of 
several excited quantum levels of final state (see formula (4)). Similarly, at 
JJ < - E8 (this region will be called "activationless") transition occur from 
several excited quantum levels of initial state to the ground final state. 
Calculation shows that the dependence of the activation energy on JJ in 
the general case is of the form shown in Fig. 3. It should be stressed that 

Fig. 3. 

the dependence of E" on ilJ in the barrierless and activation less regIOns IS 

of a universal nature, viz., at JJ - Er:;in < - E., E" attains the minimum value 
Er:;ln and remains constant, whereas at JJ_Er;:in>E8 the activation energy 
rises linearly, with JJ: E" = E':;~~verse + JJ, where E':;~~vorse is the minimum 
activation energy for the reverse reaction. In the normal region the depen­
dence of the activation energy on JJ is expressed in terms of the classical 
subsystem parameters. In particular, in purely electron transfer and in 
simplest proton transfer reactions it is determined by formula (6). 

The nature of the dependence of E" on JJ in the barrierless and acti­
vationless regions has a simple physical sense, which can be explained taking 
as an illustration a purely proton transfer reaction. First of all, it should 
be noted that both for initial and final system states there exists a set of 
potential energy surfaces, each of which corresponds to a definite state of 
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U(Ij) 

Fig. 4a. 

U(rv> 

Fig. 4b. 

the quantum subsystem; ground state, the first excited (ml and m;), the 
second excited (m2 and m;), etc. (Fig. 4a). Let us consider the case when 
ilJ < - Es. The arrangement of the potential surfaces of initial (i) and final 
(f) states is schematically shown in Fig. 4b, in which by solid lines are 
shown the surfaces corresponding to the ground initial and final states of 
quantum subsystem, and by dashed lines the surfaces corresponding to the 
first and m-th excited final states of quantum subsystem. As is clear from 
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this figure, at l1J < - Es the system transition from the ground initial to the 
ground final state corresponds to the activation energy E,,, whereas the 
transition from the ground initial to the first excited final state (l1E I ) does 
not require any activation energy at all and thus is more advantageous in 
the given situation Therefore, the reaction rate constant will be mainly 
determined precisely by this transition. The transitions to more highly 
excited states (l1Em) are not advantageous since they require activation. With 
decreasing l1J, however, the main contribution to the rate constant will be 
made by the excited level of final state for which activation energy is zero. 

The scheme presented above is physically obvious, but somewhat sim­
plified. Actually, as shown by calculation, an essential contribution to the 
reaction rate constant in the "activationless" region is made by several excited 
levels of final state, so that the transition from the normal reaction region 
to the activationless one is described by smooth curve (Fig. 4b). Mathemati­
cally, this can be accounted for by the fact that although the distance 
between the quantum subsystem levels (LIE) is greater then kT (for proton 
it is several kilocalories per mole), l1E is much less than E." which is usually 
equal to some tens of kilocalories per mole. From what has been said 
above it is clear why in the normal region the transition occurs from the 
ground initial to the ground final state: the trasitions to the excited final 
states prove to be less advantageous than the transition to the ground state 
owing to a large activation energy. The excited initial states do not par­
ticipate in the process since the probability of pre-excitation is proportional 

to exp ( - ~Ifj) (Gibbs factor), whereas the gain in the activation energy 

does not compensate this factor. However, when passing to the barrierless 
region, when the value of 11.1 becomes similar to that of E", both these 
factors compensate each other and the transitions from the excited initial 
states start to make a contribution to the reaction rate constant*). 

*) In his recently published papers R. A. Marcus, being apparently unfamiliar with the 
studiess' 14), made an attempt to apply the formulae derived by him for purely electron 
transfer reactions to the description of some arbitrary chemical reactions in liquids 
and gas phases. For the free activation energy he used formula (5) with some 
additional conditions £,,=0 at dJ<;;;-·Es and £,,=JJ at JJ?E.,. As emphasized by the 
author himself, this is a purely empirical approach, which does not reveal the physical 
significance of the parameters appearing in the theory. It follows from the results of 
present study that the physical mechanism of the process involving the breaking or 
deformation of chemical bonds is of a much more complex nature than in the case of 
electron transfer reactions. The activation energy can not be presented by means of 
a universal formula for arbitray reactions (see, e.g. \61, (71 and \81). In the normal 

Continued to next page 



Kinetics of Chemical Reactions in Polar Liquid. I 

Now let us examine the structure of the preexponential factor A in 
formula (5). As shown by calculation, the preexponential il is to a con­
siderable extent determined by the exchange integral value 

( 9 ) 

where <PI and <Pi are the wave functions of final and initial states of subsys­
tem, which remains quantum during the reaction (e.g., of electrons or pro­
tons), V the potential inducing the reaction, e.g. for a purely electron 
transfer reaction V is the interaction energy of electron with the oxidant 
ion. In the case of a purely proton transfer reaction V can be considered 
as being the potential of interaction between proton and a molecule-acceptor 
(in this case it is possible to use the Morse potential as V). Apart from 
the exchange integral, the preexponential factor contains some parameters 
characterizing the remaining degrees of freedom: both classical and those 
which in the course of the reaction undergo mutual transformations from 
quantum to classical. Below for simplicity, we shall consider in more detail 
the preexponential factor for the case when solvent is the only classical 
subsystem, and electrons and proton-the quantum subsystem. Here the 
quantity A can be written as 

A = (tJo ce 
27r (10) 

where (tJo is the characteristic frequency of the solvent and ce-the transmis­
son coefficient, which can be written as 

(11) 

The transmission coefficient ce has a quite definite significance in the theory. 
The activation factor determines the probability of the system attaining the 
intersection "point" of the potential curves of initial and final states (the 
point q{' in Fig. 1). But in this case the system can either remain on the 

region the specific form of the expressions for the activation energy dependes essen­
tially on the type of the reaction. Although the Ea versus JJ dependence in act iva­
tionless and in the barrierless regions is a universal one, in intermediate regions 
between the normal region and the activatiolness and barrierless ones the Ea versus 
JJ dependence is rather complex and is not described by the simple analytical formulae 
such as (6)-(8).18) 
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initial term, or pass to the term of the final state. The value of Q3 deter­
mmes the transition probability from the initial to the final potential curve 
when the system passes this "point". The reactions for which the trans­
mission coefficient ce < 1 are generally called nonadiabatic and those with 
(X! = I-adiabatic. In the case of an adiabatic process the probability of a 
transition from the initial to the final potential curve is equal to unity after 
the system reaches the intersection point of the terms. As it follows from 
formula (11), for the process to be adiabatic it is necessary that either the 
exchange integral L should be large, or that the velocity of the system 
passing the intersection point of the terms should be small, i. e. that the 
factor Wo in the denominator should be small (11). It should be noted that, 
unlike the Gamow factor used in some studies19

) to calculate the transmission 
coeffitient ce, the result obtained by us is of a different physical nature. 
This follows directly from the fact that even at small values of the ex­
change integral the reaction can occur as an adiabatic process if the velocity 
of the motion of the classical subsystem is small enough. (It should be 
recalled that Wo for water has a very small value). 

The comparison of formula (10) with the corresponding factor obtained 

m the absolute reaction rates theory shows that the quantity LlS# = k In ~~ 
can be considered as the activation entropy. It should be stressed, however, 
that here the notion of the activation entropy is only formally used, since 
it is well-known that no equilibrium formation can correspond to the transi­
tion state20

) and thus it cannot be characterized by conventional thermo­
dynamic quantities. On the other hand, "thermodynamic characteristic of 
the activated state" are not measured experimentally. It is possible to 
measure experimentally without making use of any model theoretical con­
siderations, only the reaction rate constant and its temperature dependence 
and, besides, various thermodynamic functions of initial and final states. 
Therefore, all the correlations observed experimentally should represent the 
relationships between those quantities. In fact, in many experiments cor­
relations were established between the logarithms of the reaction rate and 
equilibrium constants (e.g. the Bronsted relation for proton transfer reactions). 

In order to substantiate these dependences in terms of the theory pre­
sented above it is necessary first of all to establish the relation between the 
basic parameters LlJ and Es and the thermodynamic characteristics of the 
system, taking into consideration that not all degrees of freedom of the 
system were treated in the theory in a similar manner. Thus, a dynamic 
description having been used for intramolecular degrees of freedom, it is 
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possible to find for them the thermodynamic characteristics from the energy 
spectrum by a conventional method. If the classical subsystem consists of 
a set of harmonic oscillators with the frequencies fiWk<kT, the free energy 
is equal to 

(12) 

where the last term Uo is equal to the minimum potential energy of the 
classical subsystem. Taking into consideration that the excitation energies 
of the quantum system en-eo are large and tiwk<kT, formulla (12) can be 
written in the approximate form 

N tiw k N fiWk 
F dyn = eo+uo+kTk"'flln kT + k}j-2- (13) 

In this approximation the entropy can be written as 

N fiWk 
Sdyn = -k flln kT +kN (14) 

where N is the number of classical degrees of freedom. 
On the other hand, the solvent was described by means of a fluctuating 

polarization. Although this can be represented by a set of oscillators with 
frequences Wi, some thermodynamic functions for the solvent can differ from 
those of ordinary oscillators. If for simplicity we use the Born modeF1l, 
the free energy of the solvent in the presence of the charge is of the form 

1 ( 1 )~ A'solv fiw Nsolv fiw 
Fso!v = --8 1-- JJ2dv+ I; -2' +kT I; In kT

i 

7r: e8 i~l i~l 
(15) 

and the entropy is determined by the formula 

·\solv fiw 1 1 de ~ ... 
SSOIV = -k I; In kT

i 
+kNso!v+-s -2 dT

8 
D 2dv 

';~l 7r: e. 
(16) 

The difference between formula (16) and (14) can be significant only if e. 

strongly depends on temperature. Below we shall show that the last term 
in (16) is usually of no importance for the processes under consideration. 
Using (13) and (15), let us write the free energy of the reaction as 

{
Nt fiwt N, fiw% 1 ( 1 )~ --> _ } 

.dFo= Lleo+Lluo+ I;-2-- I;-2---S 1-- [D}-m]dv 
k~l k~l 7r: e. 

Nt fiw f .,', fiwf 
+kTI; In-k -kTI; In--~- (17) 

k~l kT k~l kT 
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where summation is made over all classical degrees of freedom of the sol­
vent and classical intramolecular degrees of freedom. The relation between 
JFo and JJ can be found if we take into consideration that the expression 
in braces in (17) is the difference of minimum energies of initial and final 
states, i. c. it coincides with JJ 

Sf "liw{ xi kw% 
JFo = JJ + kT ~I In kT - kT 'fl In kT (18) 

It follows from (18) that JJ coincides with JFo in the case if the number 
of classical degrees of freedom of the reactants does not change during the 
reaction. For example, JJ=I=JFo if the number of molecules in the solvation 
shell of the reagent changes during the reaction. If c.g. one molecule leaves 

nw 
the solvation shell, JJ-JFo;::::' -3kTln kT. If we take for evaluation w""" 

1012 sec-I, this difference will be ,....,10kT=6.0 kcal/mol. For reactions in­
volving a change in the number of classical degrees of freedom, the entropy 
JSo should also change significantly 

, Sf fiw~. ·\i nwl 
JSo=k(Nf-Ni)-k'flln kT -k~lln kT 

1 1 des (-'2 ~2] d +s; e; dTJ[Df-D i v 

The estimation of the last term equal to 

(19) 

(20) 

shows that usually it does not exeed k and can be dropped. It is evident 
from (19) that in reactions involving trasformation of the quantum degrees 
of freedom to classical and vice versa, the main contribution to the entropy 
change is due to the difference between the second and the third terms. 
Comparing the structure of formulae (18) and (19), we see that JJ is nearly 
equal to the difference of internal energies of reaction JEo 

(21) 

For comparison with experiment, it IS more convenient to relate JJ to the 
reaction heat (-JHo) 

JHo= JJ+pJV+kT(Nf-Ni ) (22) 

Usually the change in volume during the reaction III a solution IS not large 
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(by estimation p JV......, 10-2 kcal). Therefore, we can consider JJ to coincide 
practically with the reaction enthalpy, if the number of classical degrees of 
freedom does not change significantly. 

As has been pointed out in the beginning of the present study, the 
reaction rate constant is a function of JJ. In its turn JJ is related to the 
reaction free energy (18) and the reaction heat (22). To find the correlation 
of the logarithm of the reaction rate constant with the reaction heat for 
a number of similar reactions, it is necessary that the series of reactions 
under consideration should satisfy the following conditions. First, it is 
necessary that the reorganization energy Etot should be constant for the 
whole series. Second, the preexponential factor should also remain un­
changed. If a correlation with the reaction free energy, i. e., with the 
equilibrium constant is sought for, rather than with the reaction heat, 
another condition should be added, viz. that the reaction entropy should 
be the same for all the reactions of the series. On the other hand, if cor­
relations of this kind are observed for a number of compounds, this should 
mean that the reactions being studied satisfy the above conditions. 

A more detailed comparison of the theory presented above with the 
experimental data will be given in the next paper. 

We wish to express our thanks to Dr. M. N. Vargaftic and Dr. O. N. 
Temkin for usefull discussion. 
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