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We consider a fluid film on the inner walls of  a capillary. The film surrounds another fluid in the core. 
It is known that the capillary instability, driven by the surface tension at the fluid-fluid interface, breaks 
up the film if it is primarily stagnant. In contrast, as we show, a primary flow, in a certain range of  
parameters, can keep the linearly unstable film from rupturing. This is a result of the nonlinear low- 
level saturation of  the interface instability. This saturation is due to the coordinated action of  the desta- 
bilizing factors, the shear of  flow, and the surface tension at the interface. The resulting state of  the 
interface is, in general, chaotic oscillations, with their amplitude being much less than the unperturbed 
film thickness. The approximate equation of  interface evolution is derived. The saturation mechanism 
is explained. The characteristic scales of  the developed oscillations are found, and the parameter range 
of  the theory applicability is discussed. © 1987 Academic Press, Inc. 

INTRODUCTION 

Fluid films on inner walls of tubes occur in 
nature, industry, and laboratory. Examples 
abound. In laboratory practices, a capillary can 
be washed clean of a fluid by displacing it with 
another fluid, and in this process the initially 
present fluid is often left behind as a thin film 
on the capillary walls (1). Also, water and oil 
can displace one another in a porous rock. 

In crude oil pipelines, the water entrained 
in the oil can settle out to the pipe walls as a 
thin film. On the other hand, one can think 
of providing such a film artificially to reduce 
the power needed for the oil transportation 
[see, e.g., Ref. (2)]. 

In coating, if the inner wall of a tube is to 
be coated with a film of a material with certain 
desirable properties, one could consider de- 
positing the material in liquid state, provided 
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the capillary instability would not break up 
the film. 

The stability of such tube wall films, gen- 
erally surrounding another fluid in the core, 
is obviously of a significant interest. The finear 
analysis shows a long-wave instability (3) and 
gives an order estimate of the film breakup 
time. The nonlinear process of the film 
breakup under the (capillary) instability in 
two-fluid tubes with no primary flow was stud- 
ied recently (4). 

In the present communication, we show 
that primary flows can play a crucial role of 
keeping annular films from rupturing. The 
capillary instability saturates long before the 
interface deviation can become comparable 
with the film thickness. This is a result of a 
nonlinear mechanism combining the factors 
destabilizing the fluid-fluid interface, its non- 
linear distortion by the flow shear, and the re- 
storing action of surface tension. This mech- 
anism was first described (5) in the example 
of Rayleigh-Taylor instability in a planar two- 
fluid system. For such a system with no pri- 
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mary flow, the nonlinear breakup of the film 
has also been studied recently (6). Thus, the 
present work which demonstrates a qualita- 
tively new effect of nonlinearity in capillary 
instability, its saturation in flowing films, is to 
the nonlinear study (4) of primarily stagnant 
annular films, approximately as the work (5) 
is to (6) for planar films. 

A related study of outer films flowing down 
vertical cylindrical columns was done in 
Ref. (7). 

PRIMARY FLOW 

We consider a concentric flow of two fluids 
along a straight circular capillary of radius c, 
as sketched in Fig. 1. The outer fluid is a thin 
film: 

h = - c - b ~ b ,  [1] 

where h is the film thickness and b the radius 
of the unperturbed fluid-fluid interface. 

To isolate the surface-tension-driven "cap- 
illary instability" intrinsic to the cylindrical 
interface (8), we assume the (incompressible) 
fluids to be of equal densities O and viscosities 
~. The capillary is assumed to be sufficiently 
narrow, so that gravity can be neglected as dis- 
cussed in some detail for the cylindrical ge- 
ometry in Ref. (4). The corresponding small 
parameter, a modified Bond number, is cited 
below (see Eqs. [47] and [48]). 

The primary flow is driven by the constant 
gradient of pressure P, 

OP OP OP 
- -  = cst=-A, - -  = - -  = 0, [2] 
Oz Or 049 

where z, 49, and r are the usual cylindrical co- 
ordinates, with r = 0 on the capillary axis (see 
Fig. 1). The flow velocity has the well-known 
PoiseuiUe profile 

FIG. 1. Definition sketch for the primary flow. 

A 
U=~A~(cZ-r2), V = W = 0 ,  [3] 

(where U, V, and W are, correspondingly, the 
z-, 49-, and r-components of velocity) so that 
only the axial velocity is nonzero, and even it 
does not depend on z and 49. It is easy to check 
that Eqs. [2] and [3] satisfy all the fluid equa- 
tions and boundary conditions [see, e.g., 
Ref. (3)]. 

INTERFACE EVOLUTION EQUATION 

The exact perturbation equations and rel- 
evant boundary conditions are given in the 
Appendix. To obtain the interface evolution 
equation, we will neglect certain terms in the 
perturbation equations. Such a procedure is 
justified if one can show that substituting the 
solution of the simplified equations into the 
full equations renders the neglected terms in- 
deed relatively small. In the Appendix we 
demonstrate such self-consistency for our der- 
ivation assumptions, in a specified range of 
system parameters. 

First, we assume the combination of the lu- 
brication approximation [see, e.g., Ref. (9)] 
and the Stokes approximation for the film, 
neglecting the inertia and time-derivative 
terms in the Navier-Stokes equations, and ex- 
pecting the z and 49 scales to be of the order 
of b which is much greater than the radial scale 
h, (see Eq. [1]): 

h 
K ~ I .  [4] 

The Navier-Stokes equations (see Appendix), 
yield in the main approximation 

01) 02U 

Oz - #-fir TM [51 

Op 02~) 

r049 - txffr2' [61 

and 

OP=o,  [7] 
Or 

where u, v, w, and p are, correspondingly, the 
perturbations of z-, 49-, r-velocity, and of the 
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pressure, in the film. Using the Navier-Stokes 
equations for the core fluid and the normal- 
stress condition at the interface, one finds (see 
Appendix) in the main approximation 

ff 
p = - ~ 7 - fiaT, [8] 

where 7(t, z, q~) is the film thickening, 

7=-b-ri, [9] 

if the interface is described by 

r = r,(t, z, q~). [101 

In [8], cr is the surface tension constant and A 
is the two-dimensional Laplacian, 

02 1 02 

a ---~z2-~ b2 0~2" [11] 

In particular, for the contribution of the in- 
ertial terms into the pressure perturbations of 
the core to be negligible as compared with the 
film pressure perturbations, one needs, as 
shown in the Appendix, the parameter con- 
dition 

R=-Uih 1, [121 
P 

where Ui is the interface velocity, 

Ui- U(b), 

and u is the kinematic viscosity, 

u--- #/p. [14] 

Obviously, R is the film Reynolds number 
based on the thickness h and the interface ve- 
locity Ui. The condition [ 12] can be easily seen 
to be stronger than the one providing for the 
smallness of inertial terms compared to vis- 
cous terms in the film Navier-Stokes equa- 
tions for perturbations (see Appendix). The 
conditions [4], [12], and an additional con- 
dition which provides, in particular, for ne- 
glecting the time-derivative terms in the Na- 
vier-Stokes equations (and whose explicit 
form is given below) suffice for justifying all 
the approximation equations, including [5] 
through [8]. We will use the continuity equa- 
tion [A5] approximated as 

[131 

Ou 10v Ow Oz+ aT+ =0. [151 

On the interface, the kinematic condition of 
impermeability [A7] can be written as 

07 ~ 07 v 07 
0 t + 0 _ _ + u ~ + 7 } 7 + w = 0  [16] 

in the reference frame of the unperturbed in- 
terface, where 0 is the primary flow profile in 
that frame: 

O(r) = U -  g(b). [ 171 

Thus, 0(b) = 0, and Uon the interface in (16) 
can be approximated as 

~ Ab Ui 
U(ri) = 0(19) + :-~r (ri -- b) = T. 7 -E 7 

[ 1 8 ]  

assuming that the film thickening is small, 

n/h4. 1. [19] 

Vie also assume that the third term in [ 16] can 
be neglected, 

Ui 
u(b) < ~ 7. [201 

Similarly, the fourth term in [16] is assumed 
to be negligible. As a result, [ 16] takes the form 

where 

~- crTff-zz + w= 0 [211 

G=_vi 
h [22] 

and w can be taken at r = b. 
We are going to express w in [21] in terms 

of o to obtain a closed equation for the inter- 
face evolution. This can be done as follows. 
From [5], [6], and [7] we can find u and v in 
terms ofp. Substituting these in [15] will lead 
to expressing w in terms ofp and then, through 
[8], in terms of n. 

In implementing this plan, one finds from 
[s] 

lOP. z 
u = - ~ z t r  -ca-2b(r-c)], [231 
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where we have used the no-slip conditions u(c) 
= 0, as well as the tangential stress condition 
[A8] reduced to (see Appendix) 

Ou 
~r  = 0, (r = b). [24] 

Analogously, from (6), 

l o p  
v = - -  ~ [r E - c 2 - 2b(r- c)]. [25] 2# b04~ 

From [15], 

OW=or /Ou 10~) 
- /~zz+~  . [26] 

By integrating, one obtains 

~b[cgu 10V\ 
w=-  L I-~z+-~-~)dr, [27] 

since w = 0 a t  r = c .  Substituting now [ 2 3 ]  

and [25] into [27] leads to 

W = 1 b -~-~Ap f~ [r2-c2-2b(r-c)]dr [28] 

(where A is defined in [11]). The integral in 
[28] is calculated easily. This leads to 

h a 
w= - ~-~ Ap, [291 

which is transformed with [8] to 

h3~r/1 2 \ 
+ "  9 t3o] 

Finally, by substituting [30] into [21], we arrive 
at the interface evolution equation 

07 ,  Ui 07 h3~/1 A2~) ,:°" 
[311 

We recall the notations here: h is the film 
thickness, n the film thickening, Ui the inter- 
face velocity (or the modulus of  the capillary 
wall velocity in the interface reference frame) 
proportional to the driving pressure gradient 
(see [ 13], [3], and [2]), b is the constant radius 
of the unperturbed interface, and A is the two- 
dimensional Laplacian (11). 

LINEAR INSTABILITY STAGE 

When the film thickening n is infinitesimally 
small, the nonlinear term in [31] is negligible: 

where 

~ +  D 2 ( ~  A +  A2) r /=0 ,  [32] 

ah 3 
D 2 - - - -  [33] 

3#" 

This leads to the dispersion equation express- 
ing, for a linear mode 

71 oC e'~te i(kz+m¢), (m = 0, ----- 1, __-2,- • • ) 

the growth rate a as a function of  the wave- 
numbers k and m: 

2 2 m2 1 2 a=D(k + ~ - ) [ ~ 5 - ( k  +~22)]. [34] 

For nonzero m, the square bracket in [34] is 
clearly nonpositive (and strictly negative if k 

0 in addition to rn ~ 0). Thus, the instability, 
a > 0, is present for only axisymmetric modes, 
m = 0, o r  

r I OC e ikz. [35] 

The instability is longwave, 

Ik[ < b -1. [36] 

The wavenumber krn at which the growth rate 
a takes its maximal value tX m is easily found 
to be of the order o fb  -1 as well. Thus, b is the 
characteristic length scale L of  this capillary 
instability: 

L = b. [37] 

The characteristic time scale, the inverse max- 
imal growth rate aZ 1 , is found to be of  or- 
der T, 

T #b4 [38] 
~ h3----~, 

by substituting k = b -~ (and m = 0) in [34]. 

NONLINEAR SATURATION MECHANISM 

The interface evolution equation [31] has 
the same structure as its analog for the case of  
Rayleigh-Taylor instability of a planar two- 
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t, I - -  • 

FIG. 2. Sketch for the mechanism of instability satu- 
ration: (a) small initial interface deviation, n oc sin z; (b) 
the instability-increased deviation of the interface, and the 
primary velocity profile in the reference frame of unper- 
turbed interface; (c) the interface distortion by the flow 
shear leading to larger local curvatures; (d) the restoring 
action of surface tension showing in regions of larger in- 
terface curvatures. 

fluid flow (5). The general mechanism of  non- 
linear saturation of instabilities in flowing 
films, described in (5), applies here. Let us dis- 
cuss it for the case of capillary instability. 

Consider a linear mode of  wavelength l (Fig. 
2a). It will grow if l > b (see Fig. 2b). The 
destabilizing, second-derivative term in [31 ] is 
greater than the stabilizing fourth-derivative 
term as long as the linear stage goes on. How- 
ever, the linear stage leads to its own end since 
the nonlinear term increases the fastest with 
increasing 7. It becomes comparable with the 
destabilizing term at 

D2h 
rl ~ b2 Uil' [39] 

or, using [38], 

n b 2 b 
~ [TUi < TUi" [40] 

We assume the parameter condition 

b L 
e . . . .  ~ 1. [41] 

TUi TUi 

Ifn grew still further, the nonlinear term would 

exceed the linear ones. Neglecting the latter, 
we come to the equation 

at t-Gn =0.  [421 

This is the well-known "simplest hyperbolic" 
equation (10). It describes the distortion of the 
interface profile (see Figs. 2b-c). In the refer- 
ence frame of the unperturbed interface, every 
point of  (perturbed) interface moves with ve- 
locity proportional to the interface deviation 
n. This leads to steepening the forward faces 
of  interface profile as in Fig. 2c. Thus regions 
of higher curvature, i.e., of  shortened length 
scale, are created. In this scale-shortening, the 
fourth-derivative term becomes dominant  
leading to the local decrease of  ~ as shown in 
Fig. 2d. This can give rise to other high-cur- 
vature regions, etc. One can not follow the 
further evolution in much detail. In general, 
it is chaotic oscillations of  the interface, as has 
been shown numerically and analytically (11). 
Some computer simulation results are shown 
in Fig. 3 for the "canonical" rescaled version 
of[311, 

O(I)  0(I~ 0 2 ( I  ) 0 4 ( I  ) 

-~r + ~-~- + ~ + ~-~-g = 0. [43] 

The characteristic scales of the developed in- 
terface oscillations are determined by the con- 
dition that, as we have seen, all terms in [31 ] 
should be of the same order. The order equal- 
ity of  the linear terms of  characteristic length 
scale L~ gives 

b2L~ L 4' 

whence Ln ~ b. So, the nonlinear length scale 
Ln coincides with the linear one [37]: 

Ln = L = b. [44] 

Analogously, the characteristic time scale is 
the same as that [38] for the linear stage of  
instability. This conclusion follows from the 
order equality of  the time-derivative and linear 
z-derivative terms in [31]. Finally, by equal- 
izing the orders of  nonlinear and linear terms 
one finds that the characteristic amplitude of  

Journal of Colloid and Interface Science, Vol. 115, No. 1, January 1987 



230 FRENKEL ET AL. 

t~ (a) 

- 4  I J { I I I I 
o ~ ,~o 

4~ cb 

- 4  i i { a I 
0 ~ 100 

- 4  
0 ~ 100 

0 ~ I 0 0  

-4  ' 
0 ~ 100 

FIG. 3. The result of the numerical solution of Eq. [43] 
by Sivashinsky and Michelson (11). 

the oscillations is small (which is consistent 
with [19]): 

-~ "-~ ~ [451 
h 

where ~ is defined in [41 ]. 
In the capillary instability case considered 

here, the general saturation mechanism (5) of 
flowing-film instabilities has some interesting 
characteristics. First, surface tension plays two 
contrasting roles. It linearly destabilizes long- 
wave perturbations as far as they are suffi- 
ciently small, but on the other hand, when the 
nonlinear stage sets in, surface tension is an 
important factor in saturation of instability, 
decreasing those interface deviations which are 
too large. Second, and most remarkably, there 
is no unstable spanwise perturbations. Such 
interface perturbations, which are not dis- 
torted by flow shear, could not saturate and 
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would lead to the film breakup (5). In capillary 
instability, a primary flow keeps an unstable 
film from breakup no matter what the initial 
perturbations are. On the contrary, a stagnant 
film will inevitably break up, as was studied 
in (4). 

DISCUSSION 

The domain of applicability of our conclu- 
sions can be expressed in terms of the interface 
velocity Ui by combining [41] and [12]: 

trh 3 p 
- -~  ~ Ui~-  £ . [46] 

(Of course, the condition [ 1 ], stating that the 
film is thin, is implied.) The first inequality in 
[46] can be interpreted as the smallness of the 
so-called Strouhal number, the ratio of the 
time-derivative to the inertia terms in the 
Navier-Stokes equations for film perturba- 
tions (see Appendix). It is necessary that the 
Strouhal number be small for the film to be 
kept from breakup. 

The second inequality requires that the film 
Reynolds number be small. It is merely suf- 
ficient but not necessary for our conclusions. 
Quite possibly, the film does not rupture be- 
yond the upper limit of the domain [46]. 
However, it is physically clear that at very large 
Reynolds numbers the film will be ruptured, 
e.g., by turbulence. 

The conclusion that the film does not break 
up over a limited interval of velocities is in 
accordance with experimental observations 
(2), although strictly speaking the parameters 
there were out of the applicability domain of 
the present theory. In particular, the ratio of 
the film thickness to the tube radius was not 
sufficiently small in those experiments, in vi- 
olation of our applicability condition [ 1 ]. Also, 
gravity was not negligible in (2). Indeed, the 
condition for gravitational effects to be ne- 
glected is (4) 

B ~ h/c, [47] 

where B, the so-called Bond number measur- 
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ing the relative importance of gravity over 
surface tension, is defined as 

(Ap)gc 2 
B ~ - -  [48] 

ff 

The tube radius was relatively large, ~ 1 cm, 
in the experiments (2), and even though the 
density difference Ap was small, ~ 1 0  -2 g 
cm -3, the condition [47] was violated. 

The following parameter values (in CGS 
units) are a numerical example of situations 
when our theory is well applicable: b "-~ c 

10 -1, with h -~ 10-3 ; / . t  ~ 10 -2,  p ~ 1; 
10; and Ui "-~ 10 -2. It follows for the axis 

velocity U0 =- U(0) that Uo ~ Uib/h ~ 1. The 
pressure drop needed to drive the flow is found 
from [2] and [3] with r = 0: 

OP Uo# 1 X 10 -2 
0Z b 2 10 - 2  1. 

The time scale [38] is found to be ~ 102. The 
capillary instability tends to be a "slow" one: 
it will often have no time to show up, if  the 
capillary is short so that the time it takes for 
the film fluid to pass through it is less than the 
time scale [38]. In our numerical example this 
means that the capillary is shorter than -~ 1 
cm, however. 

In real systems, the instability due to vis- 
cosity stratification (12) can prove to be more 
important. It can saturate by the same non- 
linear mechanism (13). Finally, when the film 
is very thin, h < 10 -4 cm, the van der Waals 
molecular forces play the role of the destabi- 
lizing factor for the saturation mechan- 
ism (14). 

The main results of the present work were 
presented also at the Fifth International Con- 
ference on Physico-Chemical Hydrodynam- 
ics (15). 

APPENDIX 

From the complete fluid equations (see, e.g., 
(3)) splitting the perturbed velocity (fi, ~, ~) 
in the sum of the primary velocity (U, 0, 0) 
and perturbations (u, v, w) as (fi, 3, ~) 
= (U, 0, 0) + (u, v, w), and the perturbed pres- 

sure/~ as/~ = P + p, one easily finds the exact 
nonlinear equations for perturbations. The 
Navier-Stokes perturbation equations are 

Ou Ou 3u v Ou OU Ou 
- - +  W-~r + at U~+UOz+r-~+ wg 

_ 101) q_vV2u ' [A1] 
p Oz 

Ov Ov Ov v Ov Ov wv 
ot  + U o z  + U ~z  + r - ~  + w -~r -t- r 

_ 1 ap ~_v(v2v+2aw v) 
or04) r049 r z ' [A2] 

Ow Ow Ow v o w  Ow v z 

a r - r  
_ l ap~_v(vZw 2av w) 

pOr  r 20¢ ~ , [A3] 

where 72 is the three-dimensional Laplacian 
in cylindrical coordinates, 

2_ 02 1 0 2 0 2 1 0 
V = ~ z Z + ~ o - ~ + O r  --'~q r Or" [A4] 

The continuity equation is 

Ou 1 0 v  1 0 
~zz + r  ~-~+r ~r(rW) = O. [A5] 

We will denote the core quantities by the sub- 
script "c" to distinguish them from the cor- 
responding film quantities. We will not write 
down the core equations--they can be ob- 
tained from [A1-3] and [A5] formally by sim- 
ply changing all symbols of perturbations u, 
v, w, p to u¢, vc, we, Pc, correspondingly. 

We turn now to the boundary conditions. 
On the capillary walls, the viscous film must 
satisfy the no-slip conditions, 

u = v = w = O ,  (r= c). [A6] 

On the fluid-fluid interface, the kinematic 
impermeability condition is 

On On V 
0~ + w = 0. [A7]  +u +UVzz. r '  49 

Also, we must demand the continuity of ve- 
locities at the interface, as well as the equilib- 
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rium of forces there. The exact equations in 
cylindrical coordinates can be found in (7) [see 
also (3) and (4)]. We will not rewrite those 
rather lengthy equations here. Instead, we will 
give their approximate form justified by 
smallness of surface curvatures generated by 
[31] as it follows from [45], [41], [44], and [4]: 
the z - r  stress condition 

Ow OU OWe OUe 
-~z +-~r = az +-~-r' (r = b); tAg] 

the ~-r  stress condition 

l o w  Ov v l Owe Ove v¢ _ _ _ +  - _ _  

r 04) Or r r 04) Or r '  

(r = b); [A9] 

the r-r stress condition 

OW OWe 
P -  2#~r-r = P c -  2#-~rr- r 

_[ 1 , 027 1 027] 
- o ~ l - r ~ z 2 + - ~ - ~ ] ,  (r=b);  [AIO] 

and, finally, the velocity continuity 

u=ue ,  V=Vc, w = w e ,  (r=b).  [Al l ]  

Now, our derivations can be justified (in the 
way discussed earlier) in the parameter range 
defined by [1], [12], and [41] (see also [38]), 
as follows. 

In our solution, the film pressure p is ex- 
pressed in terms of ~7 through [9], and then 
the film velocities are expressed in terms of  
through [23], [25], and [30]. Since ~ -~ eh, see 
[40] and [41], one finds (u/Ui) "~ (ah3e/#baUi) 

~(b/TUi) ~ E 2 (thus justifying [20]). Anal- 
ogously, 1) " ~  ~.2U i and w ~ e2xUi. Also, we 
have in the film (l/r) ~ (l/b), (O/Or) ~ (l/h), 
(O/Oz) ~ (l/b), and (O/Ot) ~ (l /T).  Substitut- 
ing the above estimates into [A1-3], one can 
easily see the smallness of the terms neglected 
in the transformation of those exact equations 
to [5]-[7]. For example, we estimate the ratio 
of the neglected term w(OU/Or) in [AI] to the 
retained t e rm P(OEbl[Or 2) to be small: 

O U  / 02hi 2 Ui I E2Ui 

Uih 
~ x  ~ x R 4 , 1 .  

11 

For the core, clearly, (0/0r) ~ (l/b) instead 
of 1/h in the film, and also U "~ Ui(b/h) 
= (Ui/r) (see [3]). One estimates, taking into 
account the analog of [AS] for the core, that 
we "~ ue "-~ ve, and, from the continuity of 
velocities at the interface [11], we "~ ve ~ ue 

u ~ ~3Ui. Then it is easy to justify that the 
core analog of [A I-3] can be approximated as 

Oue OU_ 1 Ope 
U ~ z  + We Or p Oz ' 

u OVe=_ l Opo 
Oz or 049' 

uOwe_  lope  

Oz p Or 

which leads to estimating the pressure as 

U~E 2 
P e ~  P - -  

K 

In the film, from [5], 

Then 

P e l P ~ - - - -  

Ut~  2 

p ~" bvo h2 . [A12] 

pU2e 2 h E Uih 
= R ~ I .  

K bvpUi ~2"~ z, 

Hence, Pc can be neglected in [A10]. Neglect- 
ing as well the viscous terms in [A10] can be 
justified using [A12]; for example, 

OWe / ,~ I.t~zUih 2 
~t-~r / P bb#Uie 2 " r2'~ 1" 

Thus, reducing [A10] to [8] is justified. 
Finally, it is easy to see that all the terms in 

[A8] other than Oui/Or are indeed much smaller 
than e2Ui/h, the order of OudOr in the film. 
This justifies [24]. Considering [A9] analo- 
gously justifies the equation (Ov/Or) = 0 
(r = b) which was used to arrive at [25]. 
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