
Rheoelectric Effect in a Polar Liquid Interphase Layer 

A L E X A N D E R  J. B A B C H I N  

Department of Mechanics, Technion, Israd Institute of Technology, Haifa, Israel 

M I C H A E L  A. P I L I A V I N  

Department of Isotope Research, Weizmann Institute of Science, Rehovot, Israel 

AND 

V E N I A M I N  G. L E V I C H  

Department of Chemistry, Tel Aviv University, Tel Aviv, Israel 

Received September 27, 1974; accepted March 5, 1976 

The mechanical state of a polar liquid in an electric field is considered. Orientation of molecules by 
the field and dipole-dipole interactions contribute a retardation shear stress term to the equation 
governing the flow of the liquid. Expressions are deduced for the retardation stress term, the shear 
modulus, and the effective viscosity, which are field and deformation rate dependent. The relevant 
parameters in these equations are evaluated from the experimental data on chloroform of Andrade 
and Dodd (Proc. Roy. Soc. (London) A187, 296 (1946) ; A204, 449 (1951)). Comparison of experiment 
with theory shows them to be consistent. The expressions are then extended to the case of a low 
molecular weight polar liquid in an interphase layer or a dilute electrolyte solution in contact with 
a solid phase. Since complete rheological experimental data on water are unavailable, extrapolating 
chloroform parameters to water produces a tentative prediction that the relative viscosity saturates 
at about 2 kV/cm for deformation rates on the order of 103 sec -1. 

INTRODUCTION 

The question regarding the mechanical  s ta te  
of surface liquid layers and the character  of 
surface viscosi ty and elast ici ty has been of 
interest  since the times of P la teau  and Maran-  
goni (1), over a hundred years ago. Never the-  
less, unti l  now there has been no general ly ac- 
cepted description of the surface layers and the 
existing views are often cont radic tory  (2, 3). 
The present  authors  believe tha t  the cause of 
these difficulties is tha t  there is no general 
theory  for the case of contact  of a l iquid with 
another  phase. Since surface rheology m a y  be 
caused by  a number  of factors, all of which 
m a y  lead to mechanical  anomalies, i t  is un- 
l ikely tha t  one could formulate  a theory which 
includes all of them. 

This work concerns itself with the par t icu lar  
bu t  impor tan t  case of surface rheology of a 
low molecular weight liquid. Namely,  the 
mechanical  s ta te  of the surface and interphase 
layers of a polar  liquid or a dilute electrolyte 
solution in contact  with the solid phase.  
Specifically, the electroviscous effect in a polar  
liquid close to the phase boundary  and within 
the diffuse electric double layer will be ex- 
amined. The results also apply  to the case of 
overlapping electric double layers within inter-  

phase layers or in thin capillaries. The  authors  
are aware of only one original work in this 

area, tha t  of Lyklema and Overbeek (4), 

which has been reviewed by  Haydon  (5). 

Exper imenta l  proof for the existence of an 

increase in viscosi ty exists in the works of 
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2 BABCHIN, PILIAVIN AND LEVICH 

Andrade and Dodd (6, 7). These authors 
studied the change in viscosity of flowing polar 
liquids in the presence of an external electric 
field which is perpendicular to the direction 
of motion. In their work, Lyklema and Over- 
beek assumed that a liquid within the diffuse 
electric double layer is subjected to the self- 
consistent field of the double-layer ions, this 
field being considered as external with reference 
to the molecules of the liquid. Following 
Andrade and Dodd, Lyklema and Overbeek 
found that the increase in viscosity is due to 
the change in the activation energy of the 
molecular dipoles within the electric field. 
They give an expression for the viscosity, 
which is 

~(x) = ,7o(1 + f(d~/dx)~) [I] 

where n(x) is the viscosity within the double 
layer a distance x from the solid-liquid 
interface; 70 is the bulk viscosity; ~k(x) is the 
potential distribution within the electric double 
layer; --d~b/dx is the electric field, and f is the 
electroviscosity constant of Lyklema and 
Overbeek which they calculate to be: f 
= 10.2-10 -12 V -2 cm 2. This is an order of 
magnitude higher than that found by Andrade 
and Dodd. Equation [-1] shows that there 
exists a physical basis for the increase in 
viscosity and reflects the effect of an electric 
field on a polar liquid. In this sense, the work 
of Lyklema and Overbeek is fundamental in 
the field of surface rheology. However, it is 
not possible to say that Eq. F1-] represents 
the effect fully, as it does not include dipole- 
dipole interactions between the oriented 
dipoles of the polar liquid. As will be shown 
below, when this interaction is included one 
finds that a liquid in an electric field acquires 
non-Newtonian rheological properties and the 
experimental curves of Andrade and Dodd 
may be fully characterized. 

2. RHEOLOGICAL MODEL OF A POLAR 
LIQUID IN AN EXTERNAL 

ELECTRIC FIELD 

Consider a polar liquid placed in an arbitrary 
electric field of intensity E. I t  is correct to 

neglect conduction effects when the liquid 
has a low impurity content as well as when 
the liquid is in the electric field produced by 
the ions of the electric double layer. The field 
orients the dipoles of the liquid and the 
interaction between the oriented dipoles 
produces an additional retardation force when 
the liquid is sheared at a rate 3;. I t  should be 
noted that Frenkel (8) had earlier indicated 
that there should be a connection between 
the rheological state of a polar liquid and 
visco-elastic phenomena which are related to 
structural changes. He noted that structuring 
may be due to molecular orientation as a 
consequence of which the relaxation times for 
the structural changes are much longer than 
for the individual molecule. 

The equation governing the flow of a liquid 
in an electric field may be written 

r = r r / + 0 ( E , ~ )  [2] 

where r is the shear stress; O(E,'f,) is the 
retardation shear stress which is a function of 
the electric field and deformation rate; and 
is the Newtonian viscosity. 

The retardation stress O(E, 4/) will now be 
deduced. In an electric field, polar molecules 
acquire a statistical orientational distribution 
about its direction, which permits one to 
consider it as a nematic liquid crystal. The 
usual picture of a nematic liquid is that of a 
fluid with a one particle orientational distri- 
bution function which is axially symmetric. 
Although several authors have considered this 
mesophase (9-11), the model assumed is that 
used in the statistical mechanical treatment 
of Maier and Saupe (12). The orientational 
interaction is taken to be of dipole--dipole 
type. The effective interaction between the 
molecules is obtained by averaging the energy 
of two molecules over all directions of the 
intermolecular vector. This is equivalent to 
assuming that each molecule is fixed in some 
average position on a lattice. The result from 
this treatment is that there exists a tempera- 
ture below which the molecules tend to orient 
about some preferred direction. Alternatively, 
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RHEOELECTRIC EFFECT IN POLAR LIQUID INTERPHASE LAYER 3 

alignment may also be obtained in the presence 
of an electric field (13). 

In the following, it will be assumed that 
alignment of the molecules in the liquid is 
produced by an external electric field or the 
equivalent electric field, considered to be 
external, which results from the interaction 
of two electric double layers of ions in the 
interface. Due to mutual interactions between 
the oriented molecules, the liquid crystal 
acquires a shear modulus Go. 

Figure 1 shows a system of neighboring 
layers of oriented dipoles. The magnitude of 
the dipoles, P z ,  is the time averaged projection 
of the molecular dipole moment onto the field 
direction. The interaction energy, U~;, between 
two statistically oriented dipoles, i and j,  in 
neighboring layers, each having a projection 
PE onto the straight line passing through the 
dipole centers and parallel to the field direc- 
tion, is given by 

Ui; = - - 2 P ~ 2 / r i j  ~ [-3] 

where r~; is the distance between the centers 
of the dipoles being considered. If due to shear 
there is a small angular displacement 3,, the 
new distance between the dipoles becomes 
rn(3,)  = r~Scos3, and the projection of the 
dipole onto this axis is PE (3,) = P~ cos 3,. The 
interaction energy between two neighboring 
dipoles which have shifted through the angle 
3' may be written as 

o~;(3,) = - 2 P ~ ( 3 , ) / r ~ ? ( 3 , )  

= -z_t'~ cos~ (3,)/~,;~. I-4-I 

When cos 3, is developed in a power series 
in terms of 3, and all terms of power greater 
than two are neglected, the energy may be 
rewritten 

Un(3,) = -2PR2(1 -- 3,2/2)5/r~?. [-5-] 
Further, applying the binomial expansion to 
the term in brackets and retaining terms of 
order two and less 

U~j(~,) = -2PE2(1 - 53,2/2)/rn ~. [6]  

Since the molecules lie on a lattice, the 
change in energy between any two correspond- 
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FIO. 1. Relative displacement through the angle -y of 
two representative neighboring layers. 

ing molecules in adjacent layers may be 
found by use of equations [-3] and [-6] when 
the layers undergo a displacement. Thus, 

z~U~j(v) = u ~ ( v )  - U~; = 5 P ~ 3 , V r ~ ? .  [-7] 

Given that the number of molecules per unit 
volume is n = rii -a, the change in potential 
energy per unit volume is 

A U  = Ui~(1,)n = 5PE23,~/rn 6 = 5PE2n23, 2. [-8-] 

From classical theory of elasticity (14), the 
energy AU is also given by 

A U  = Go3,2/2. [9-] 

From the last two expressions, the shear 
modulus in terms of the dipole moment and 
dipole density is given by 

Go = IOPE2/ rq  6 = IOPE2n 2. [-10-] 

The equation of state of a polar dielectric 
from Kirkwood's theory (15) is 

( ~ -  1)(2~ + 1) = --{47rn'c~ gPo~l} 
+ [113 

9e 3 ! 3--~l 
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and the time averaged projection of the dipole 
moment on the direction of a field is 

PE = (a + gPo2/3kr)E [12] 

where P0 is the permanent dipole moment of a 
molecule of the liquid, a is the polarizability 
of a molecule, k is Boltzmann's constant, T 
is the absolute temperature, and g is a constant 
characteristic of a given liquid which describes 
the effects of a dipole assembly on a given 
dipole from it. Its value depends upon the 
spatial distribution of molecules. 

The number of dipoles per unit volume may 
be obtained from Eq. [11] 

3 ( , -  1)(2, + 1)r[a + gPd]-ll 
[13-] 

n = 4 r  9e  3 - ~ J  " 

Using Eqs. [123 and [133 in Eq. [103, the 
shear modulus may be expressed as 

5 (, -- 1)~(2e + 1) ~ 
Go = -E 2. [14] 

8rr 2 9e ~ 

From crystal theory (16, 17) one obtains a 
relationship between the yield stress modulus 
00 and shear stress modulus Go 

Oo = Go/L E153 

where L is a proportionality constant which 
varies between 10 for an ideal monocrystal to 
1@ when account is made for dislocations 
within a crystal. Further, it will be shown that 
using the model under discussion and experi- 
mental results from Ref. (6), L is found to lie 
between these limits. 

I t  should be noted that Eq. [14] was 
deduced for a lattice of dipoles which has the 
average distance between dipoles as a lattice 
parameter. Unlike a solid crystal, in a liquid 
crystal one should rather look for dynamic 
elastic behavior of the type that may be 
represented by Maxwell's rheological model. 
In such a model, when the load is removed the 
elastic shear stress relaxes according to 

O(t) = O0e -t/r* [16] 

where t is current time. T* is the relaxation 
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time of elastic stresses which for the generalized 
Maxwell model is given by 

T* = ~/G(T*). ['17] 

Expression [17] is a functional equation. Thus, 
in order to determine T*, the following physical 
assumptions are made. Since Go(E) is the 
largest value the shear modulus may take on 
in the presence of a field, then it will always be 
true that G(T*)< Go(E), where the right- 
hand side of the inequality is given by Eq. 
[14]. Go(E) is independent of the deformation 
rate q but the Maxwell relaxation time is not. 
Thus G(T*) may be expressed in the following 
form 

G(T*) = G(E,'~) = Go(E)G(q). [18] 

The dimensionless coefficient G(3;) relates the 
modulus of the ideal crystal model Go(E) to 
the modulus of a polar liquid G(E, q). I t  is 
natural to assume that lim~0 G(E, q) ---~mini- 
mum of G and lim~-.,o G(E, q) ~ maximum of 
G. This assumption is sufficient to ensure that 
the shear modulus of a liquid with oriented 
dipoles will be larger with faster deformation 
rates. I t  is also reasonable to assume that for 
small rates of deformation G(3;) will be a linear 
function of q. The simplest function fulfilling 
all these requirements is 

G(E, q) = GoBI(1 -- BEe -a4) [19 3 

w i t h 0 < B l ~ <  1;0x< B~< l a n d B > 0 .  For 
deformation rates such that /3~ < 1 the 
exponent may be expanded in a power series 
and keeping terms to first order only, Eq. 
[19] may be rewritten as 

G(E,-~) = (B1 -- BIB2 + I~BIB2"~,)Go. [20] 

Letting K1 = BI(1 -- B2) and K2 = BIB23, 
Eq. [20] is now written as 

G(T*) = G(E, 4) = G0(Kx + K2q). [-20a] 

Placing this result in Eq. [17] leads to 

T* = ~[C0(K~ + K23;)3 -1 [21] 

Using Eqs. [-16] and [21] one obtains the 
expression for the relaxation of shear stresses 
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RHEOELECTRIC EFFECT IN POLAR LIQUID INTERPHASE LAYER 5 

conditioned by the shear modulus G(E, ~) The term in brackets is the effective viscosity 

O(t) = 0o exp . [22] ~?erf = ~7 1 -} (K1 + K2~')L 
7 

The shear stress reaches maximum once while 
the layers are displaced by an amount equal to 
the lattice constant r0 along the planes. To find 
the retardation shear stress O(E, q) in Eq. [2], 
O(t) as given by Eq. [22] must be averaged 
over the time it takes to displace the layers a 
distance r0. This time, the characteristic de- 
formation time will be denoted by Ta and is 
given by 

Ta = ro/AV [23] 

where AV the rate at which the layers are 
displaced is given by 

A V  = rodV/dx = ro'~ [24] 

and x as before is a coordinate perpendicular 
to the motion of the liquid; 3; = dV/dx  for 
one-dimensional flow (17). 

From Eqs. [23] and [24-] 

thus 

Ta = q-' [25] 

O(E, ~) = (o(t)>t = 

nqOo 

Go[K1 27 K2"~] 

>< [1 -- exp( (K127K2"~)G°I1 ;7 . ,  [26] 

where the subscript t denotes that the averaging 
is performed over values of this variable 
(0 ~ t ~ Td). 

Using Eq. [15] and placing Eq. [26] in 
Eq. [2] gives the following equation of the 
rheological state 

1 
r = ~ rl -Jr (KI 27 K2~,)L ~ 

X [1 - exp( (KI-~-K2"~)G°)I .,,}. [27] 

~ -  . , a "  [283 

When Go given by Eq. [14] is used in Eq. 
[28] the expression for the effective viscosity 
becomes 

1 

7o. = n 1 4  (Kl + K25,)L 

,,] [29] 

where 

5 
A = - -  

81r ~ 

(e -- 1)2(2e + 1) 2 

9e 2 
[2%] 

Equation [29] may be further simplified if 
one notes that the Newtonian viscosity ~ is 
the increased viscosity 70 of the liquid in 
accordance with Eq. [1], 

7o,f = 7011 + fE  2] { 1 + 
(K1 27 K2~)L 

~ o ~ + ~  /]/" [30] 

The first factor in brackets 

J1 = 1 + f E  2 [30a] 
is the same term as obtained by Andrade and 
Dodd and Lyklema and Overbeek for the 
increase in viscosity due to lowering of the 
molecular dipole energies in an electric field. 
The second term in brackets 

1 
J2 = 1 +  

(K1 + K2-i)L 

× [ , -  + 
~ o ( ' i - - + f - ~  / 3  [30b] 

accounts for the effect of rheoelectric increase 

Journal of Colloid and Interface Science, Vol. 57, No. 1, October 1976 



6 BABCHIN, PILIAVIN AND LEVICH 

in viscosity of a polar liquid as a result of 
dipole-dipole interactions between oriented 
molecules. 

3. RHEOLOGICAL INTERPRETATION OF THE 
EXPERIMENTS OF ANDRADE AND DODD 

The results obtained permit the laying of a 
theoretical foundation for a reinterpretation 
of the classical experiments of Andrade and 
Dodd in the field of electroviscosity of polar 
liquids when they flow in a direction normal 
to the field. From Eq. [-30] it is rather straight- 
forward to obtain an expression for the relative 
change in viscosity 

A~ 97eff--Y]O 

~7o 7o 

-- ( l + f E  2) 1-~ ( K I + K 2 q ) L  

×[,-exv( , j - .  [,31] 

Experiments were done on selected organic 
polar liquids flowing through a planar capillary 
in fields whose maximum intensities were in the 
range 25-30 kV/cm. This gives the value of 
f E  2 ..~ 0.01. Since the experimental values of 
A~/~0 are in the range of 0.1-1.0 an order of 
magnitude greater than the previous factor, 
Eq. [-31] may be simplified as follows without 
introducing any serious errors. 

A~ 1 

~/0 (K1 + K2q)L 

, , .  [-32] 

When the field intensity is weak such that 
(K1 + K~";,)AE2<<~oq , the exponential may 
be expanded and the expression for the relative 
viscosity has a parabolic dependence on the 
field for a given deformation rate 

A~7/~o = AE2/L~loq. [-33] 

When the field intensity is large, the relative 

viscosity approaches assymptotically the 
value of 

A~/n0 = 1/(K1 + K2q')L. [-34] 

The behavior at the limits described by the 
above two equations is typical of the experi- 
mental curves for A~/~0 = &~(E) obtained in 
Ref. (6) for a series of polar liquids in a 
constant electric field. 

Andrade and Dodd studied chloroform in 
some detail. Experimental data were obtained 
at constant pressure and in the same range 
of electric field intensity for different capillary 
cross sections. This is equivalent to measuring 
at different deformation rates in order to obtain 
the rheological behavior [Ref. (6, Fig. 14)]. 

To use Eq. [-32] for describing the behavior 
A~I(E) for different deformation rates, the 
constants K1, K2, A,  and L have to be deter- 
mined. Taking the dielectric constant of 
chloroform as ~ = 5, then A ~ 0.5 as deter- 
mined from Eq. [-29a]. The other parameters 
are determined as follows. 

As discussed above, one notes again that 
limB-~ &~/~0 approaches an assymptotic value 
as determined by the deformation rate q 
(see Eq. [--34]). To ensure that this condition 
is true anywhere within the capillary, one 
makes the approximation that 3; has every- 
where the same value as in the vicinity of the 
surface. Under these conditions and denoting 
the limiting value of viscosity by ~(oo ), then 
from Eq. [-30] it follows that 

(o~) = ~0{1 + (KI + K2q . . . .  )-IL-1}. 

From hydrodynamics the velocity profile 
within the capillary is 

v(x) = Px(d  -- x ) /2 /n  (oo )D [-35] 

where 0 ( x ( 2d is a coordinate measured 
from one of the edges, D is the length of the 
capillary, P is the pressure difference across 
the length, 2d is the thickness of the capillary. 

From this 

. . . .  (d) = dv /dx[~o  = P d / D ~ ( ~  ). [-36] 

Also, the pressure is related to the flux rate by 
P = 3QD~(~ )/2zd 3, where z is the capillary 
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width and thus 

3; . . . .  (d) = 3Q/2d2z. [37-] 

Using the information from Ref. (6) that 
d = 10 -2 cm and z = 1 cm then Q = volume 
of liquid/time of flow = 0.125 cm3/sec and 
from Eq. 1-37] 3; .... (0.01) = 2000 sec -1. 

Since, from Eq. [36], qmax (d) is proportional 
to the thickness d, then 3;max(0.011)= 2200 
sec -1 and 3; .... (0.014) = 2800 sec -~. Using 
these two values in Eq. [32-] and the viscosity 
of chloroform 70 = 0.006 poise, the solution of 
the resulting simultaneous equations gives 
L = 300, K~ = 1/900,  Ks = 1/180 000. Note 
that the calculated value of L lies within the 
range for crystals as discussed above. One can 
now use these parameters to obtain a plot 
of 47/70 versus E for various deformation 
rates. Figure 2 shows these curves. As can be 
seen, they reproduce quite accurately the 
experimental results of Andrade and Dodd 
(6, Fig. 14). The character of the curves of 
Fig. 3 clearly shows that for small deformation 
rates there is no region where &7/70 = constant, 
i.e., a region where the liquid retains a New- 
tonian character. This is in disagreement with 
the results obtained by Ostwald (18) for 
isotropic rheologic bodies but does agree with 
the results he obtains for liquid crystals 
(19, 20). 

The result should be expected. In an electric 
field, the dipoles of a polar liquid tend to 
acquire a statistical orientation along the field 
and the liquid takes on the character of a 

~°'4 / ~ ~ 1  =1500 se¢-I 1 
qo 0 . 3 ~ - -  ~ 11 ( / ..~.---~2:220o,,c- [ 

02~ / / ~ , , : 2 8 0 0  se~-' I 
0.1 

0LS  /:  , 1 
0 25 50 75 100 

ELECTRIC FIELD (esu) 

FIO. 2. Relative change in viscosity of chloroform as a 
function of electric field intensity for selected values of 
rate of deformation. Full line, predicted values from 
Eq. [313; broken lines experimental date of Andrade 
and Dodd, Ref. (6). 

4 zx~ 
3 -  k / ~  E3=75 esu 

\ \  //-- E2:5o esu 
- = 

1 

_ _ l  ) I 
0 250 500 750 1000 

RATE OF DEFORMATION (sec -1) 

FIG. 3. Relative change in viscosity of chloroform 
as a function of rate of deformation for select values of 
electric field intensity. 

liquid crystal which was the underlying model 
assumed. 

From Eqs. [32] and [29a] it follows that 
47/70 = 7i(E) saturates at smaller values of 
E when the dielectric constant of the liquid 
is larger. The experiments with acetonitrile 
confirm this. Thus, comparison with experi- 
mental results shows that the semiempirical 
expression assumed for G(3;), Eq. [19] leads 
to Eq. [30], a functionally correct form for the 
effective viscosity. 

4. EXTENSION OF RESULTS TO 
INTERPHASE LAYERS 

Unfortunately there is a paucity of experi- 
mental data on polar liquids in electric fields 
or interphase layers which would enable one 
to determine their rheological properties using 
the theory presented above. As far as the 
authors are aware, the only detailed work is 
that of Andrade and Dodd, and even so the 
only liquid for which sufficient data was 
obtained to determine the parameters K1, Ks, 
and L is chloroform. Taking the cue from the 
work of Lyklema and Overbeek where the 
viscoelectric constant f determined for several 
organic polar liquids was approximately the 
same and assumed to be valid for liquid water, 
the constants K1, K2, and L will also be 
assumed to be applicable for water. Thus, 
using ~ =  81, 7 0 = 0 . 0 1 P  in Eq. [32] one 
may determine A7/70 = 71(E) and A7/70 
= 72(3;), which are displayed in Figs. 4 and 5, 
respectively. From Fig. 4 it may be readily 
seen that the relative change in viscosity 
begins to reach its saturation value at about 
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O.t ar~ 
q 0.: 

0.2 

0.1 

;(1 --1500 sec -1 

~2 =2200 sec -1 

"~'3 = 2800  see "1 

I 
2.5 5.0 7,5 10.0 

ELECTRIC FIELD (e s u) 

FIG. 4. Relative change in viscosity of water as a 
function of electric field intensity for selected values 
of rate of deformation. 

E = 2 kV/cm, i.e., for field intensity an order 
of magnitude lower than for chloroform for 
the same rate of deformation. I t  should be 
understood that since there is a lack of detailed 
experimental data on water this result is 
tentative. 

To consider the rheoelectric effect in an 
interphase layer or thin capillary where the 
electric double layers overlap, it is necessary 
to express E as the equivalent electric field 
of the diffuse layer of adsorbed ions. In the 
interphase layer of a plane capillary the 
potential of the field, from Ref. (21) is given by 

cosh IX (x -- d)-] 
(x) = 60- [38] 

cosh (xd) 

where 6(x) is the potential at the position x 
measured from one of the capillary walls; 2d 
is the layer thickness; x is the Debye-Hiickel 
function and a constant for a given polar 
liquid or electrolyte solution; ~0 is the potential 
at the interface between the two phases. 
Equation [38] is valid for weak potentials 
only, i.e., when ~0 ( 25 mV and it follows 
from it that 

/d~ \  2 sinh2 X(x -- d) 
E2 = [ ~ )  = X~/,o 2- - [393 

\ d x /  cosh 2 (xd) 

For the case of a cylindrical capillary of 
radius a the potential as determined by Elton 
(22) is 

~bo(r-~2(16X2 ~ r2~ E403 
6(r) = \ a l  \16k 2 + a21 

where 6 (r) is the potential inside the capillary 

at the radius r, k = X -1 is the Debye radius. 
Equation [40] is likewise valid only for 
60 ~< 25 mV and when ax ~< 1. The square 
of the electric field is given by 

E2(r) = (d~by= 166o2r2(.8k__~ 2 q - r L y  [413 

\ d r /  a 4 \16k ~ + a  s] " 

Substitution of Eq. [39] or [41-] in Eq. [30] 
will give the equation for the effective viscosity 
at a given point x or r of a plane or cylindrical 
capillary, respectively. 

In the case of high surface potentials, large 
concentration of ions in the electrolyte or 
large rates of deformation, the factor given 
by Eq. [-30a] may be the same order of 
magnitude or larger than that given by Eq. 
[30b]. I t  should especially be noted that 
Eq. [30a] does not depend upon the rate of 
deformation. Its contribution to the resultant 
effective viscosity is more significant when 
the rate of deformation increases, all else 
being held constant. Thus, in the general case 
of effective viscosity in thin capillaries one 
cannot admit the simplification made to obtain 
Eq. [323 from Eq. [303 and [31"]. 

5. CONCLUSIONS 

Comparison above of the present theoretical 
model with the experiments of Andrade and 
Dodd shows that the rheological behavior of a 
polar liquid in an electric field is consistent. 
I t  is impossible to explain the saturation in 
the electroviscosity curve as being due to the 
electrode wall polarization since Ohm's law 
was strictly valid for all potentials across them. 

4 . . . . .  

3 / - - -  E 3 =5 e s u  
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FIG. 5. Relative change in viscosity of water as a 
function of rate of deformation for selected values of 
electric field intensity. 
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Also, the resultant applied field is too weak 
to orient the molecules fully (4, 23). 

Several experimental works confirm the 
presence of an effect in water flowing in thin 
capillaries. Henniker (24) studied the retarda- 
tion of liquid water flowing in capillaries of 
0.5.10 -5 cm radius and found a strong de- 
pendence of the time of flow on the ionic 
concentration, i.e., on the spatial extent of 
the ionic atmosphere. He shows that  the 
observed retardation cannot be explained on 
the basis of the streaming potential deduced 
by Elton (22) for overlapping ionic atmo- 
spheres. Maximal retardation was observed 
with distilled water, that is when the over- 
lapping double layers occupy most of the 
capillary space (x ~ 105). The effect almost 
vanishes with high ionic concentrations of 
electrolyte, i.e., when the double layers occupy 
least volume in the capillary. Accordingly, 
in this case the theory predicts that ~e, is 
almost equal to 70, the bulk viscosity in most 
of the capillary, as a consequence of which the 
observed Poiseuille viscosity is unchanged. 
The experiments of Henniker were repeated 
in more detail by Grigorov and Fredericksberg 
(25). They find the maximum effective 
Poiseuille viscosity to be about 1.6 times as 
large as the bulk viscosity when distilled 
water flows in a capillary of 0.25.10 -5 cm. 
The effect diminishes with increasing capillary 
radii and practically disappears when the radius 
reaches 2.10 -5 cm. The effect also disappears 
when the ionic concentration is 0.1 g equiv/1 
even in capillaries of 0.25.10 -5 cm radius. 
Peschel and Adlfinger (26) in their careful and 
elaborate experiments find the same order of 
magnitude as above. Their results also indicate 
a dependence on shearing rate as described 
qualitatively by the equations above. 

From the preceding analysis of electro- 
viscosity and the work of references (24-26) 
the cause of the results obtained by Bastow 
and Bowden (27) becomes clear. These authors 
attempted to determine anomalies in the 
viscosity of water flowing in a clearance greater 
than 10 -4 cm. For such dimensions the thick- 
ness of the electric double layer occupies an 

insignificant fraction of the volume as a result 
of which there is no additional resistance to 
flOW. 

In order to numerically compare the results 
of experiment with the present theoretical 
model, it is necessary to solve a rheological 
flow problem in which the viscosity is a 
function of position within the capillary and is 
given by Eqs. [301 and [-391 for a planar 
capillary or Eqs. [-301 and [-417 for a cylin- 
drical capillary. The approximation made in 
Section 3, that the viscosity inside the capillary 
is approximately constant and the same as the 
value at the wall is not valid anymore as the 
field E changes across the cross section of the 
capillary. The solution of this latter case will 
be presented in a future publication. 

ACKNOWLEDGMENTS 

The authors wish to thank Professor J. Th. G. 
Overbeek (University of Utrecht, the Netherlands) 
for taking time from his busy schedule, while on a 
visit to Israel, for a helpful and illuminating discussion. 
Thanks are also due to Dr. E. Levich (Weizmann 
Institute, Israel) for a critical review of the manuscript. 

REFERENCES 

1. STRIVEN, L. E. AND STERNLING, C. V., Nature 187, 
186 (1960) (a review). 

2. HENNIKER, J. C., Rev. Mod. Phys. 21, 322 (1949). 
3. HAYWARD, A. T. J. AND ISDALE, J. D., The rheology 

of liquids very near to solid boundaries, NEL 
Report No. 391, East Kilbride, Glasgow, 
National Engineering Laboratory, Feb. 1969. 

4. LYKLEMA, J. AND 0VERBEEK, J. TH. G. Y. Co8oid 
Sci. 16, 501 (1961). 

5. HAYDON', D. A., in "Recent Progress in Surface 
Science," (J. F. Daniely, Ed.), Vol. 1. Academic 
Press, New York, 1964. 

6. ANDRADE, E. N. DA. C. AND DODD, C,, Proc. Roy. 
Soc. (London) A187, 296 (1946). 

7. ANDRADE, E. N. DA. C. AND DODD, C., Proc. Roy. 
Soc. (London) A204, 449 (1951). 

8. FRENKEL, J., "Kinetic Theory of Liquids," Dover, 
New York, 1955. 

9. ONSAG~:R, L., Phys. Rev. 62, 558 (1942) ; Ann. N. Y. 
Acad. Sci. 51, 627 (1949). 

10. ERICKSEN, J. L., Arch. Ration. Mech. Anal. 9, 371 
(1962); 10, 189 (1962); Phys. Fluids 9, 1205 
(1966). 

Journal of Colloid and Interface Science. Vol. 57, No. 1. October 1976 



10 BABCHIN, PILIAVIN AND LEVICH 

11. OSEEN, C. W., Trans. Farad. Soc. 29, 883 (1933). 
12. MAIER, W. AND SAUPE, A., Z. Naturforseh. 15a, 287 

(1960); 14a, 882 (1959). 
13. BROWN, G. H. AND DOAN~, J. W., Appl. Phys. 4, 

1 (1974). 
14. LANDAU, L. AND LIFSHITZ, E., "Theory of Elas- 

ticity," Pergamon Press, Elmsford, N. Y., 1960. 
15. KII~KWOOD, J. G., J. Chem. Phys. ?, 911 (1939). 
16. EPIFANOV, G. I., "Solid State Physics," in Russian. 

Moscow, 1965. 
17. EIRICH, F. R., Ed., "Rheology Theory and Appli- 

cations," Vol. 1. Academic Press, New York, 
1956. 

18. OSTWALD, W., Kolloid Z. 36, 100 (1925). 
19. OSTWALD, W. AND MALLS, H., Kolloid Z. 63, 192 

(1933). 
20. PORTER, R. S. AND JOHNSON, J. F., in "Rheology," 

(F. R. Eirich, Ed.), Vol. 4. Academic Press, 
New York, 1959. 

21. OVERBEEK, J. TH. G. in "Colloid Science," (H. R. 
Kruyt, Ed.), Elsevier, Amsterdam, 1952. 

22. ELTON, G. A. H., Proc. Roy. Soc. (London) A194, 
259 (1948); A198, 581 (1949). 

23. BOOTH, F., J. Chem. Phys. 19, 391, 1327, 1615 
(1951). 

24. HENNIKER, J. C., J. Colloid Sci. 7, 443 (1952). 
25. GRIGOROV, O. N. AND FREDERICKSBERG, D. A., in 

"Progress in Colloid Chemistry," (P. A. Rebinder 
and G. I. Fuks, Eds.), in Russian. Nauka 
Publishers, Moscow, 1973. 

26. PESCH~L, G., AICD ADLFINGER, K. H., J. Colloid 
Interface Sd. 34, 505 (1970). 

27. BASTOW, S. H. AND BOWDEN, F. P., Proc. Roy. So¢. 
(London) klS1, 220 (1935). 

Journal of Colloid and Interface Science, VoL 57, No. 1, October 1976 


