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Absorption of noncondensible gases by the condensate in large power plant condensers is extremely
deleterious to plant components. Unfortunately, the absorption process is one of the most complicated
and insufficiently researched problems of contemporary hydrodynamics. Additionally, removal of
noncondensible gases dissolved in condensate at very low concentrations is extremely difficult from the
technical as well as the theoretical points of view.

This paper attempts to address the above problems by establishing physical dependencies governing
the aeration and deaeration processes during condensation, developing a means of estimating
deaerating efficiency ofa condensing apparatus, and formulating directions for further theoretical and
experimental research in the area of condenser deaeration. The authors also indicate a future research
path to determine optimal situation to achieve maximum condensation with minimum oxygen
absorption.

1. PURPOSE, ASSUMPTIONS,
AND LIMITATIONS

The purpose of this paper is to establish physical
dependencies governing the aeration and deaeration
processes in main condensers.

Oxygen concentrations approaching even 10 ppb
playa significant role in corrosion processes leading,
for example, to the long-term degradation of pressur­
ized water reactor (PWR) steam generators. There­
fore, it appears to be essential to try to determine the
stages of the condensation process and various factors
associated with these stages that contribute to conden­
sate aeration. However, such an attempt will neces-
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sarily fail if it is applied to the complex process of the
air/steam/condensate interactions within the huge
volume and complicated geometry of a contemporary
condenser. The complexity of the hydrodynamic situ­
ation inside an actual condenser necessitates simplifi­
cations and modeling. For the purpose of this study
we therefore employ the model depicted in Fig. 1.
This model is sufficiently close to the actual situation
and simple enough to allow for theoretical analyses.

In accordance with this model, the airless steam
flow is supplied to a closely spaced tubing system
characterized by the distance h between adjacent
tubes. This distance is equal to or less than the individ­
ual tube radius R. As a result of the condensation on
the first few rows of tubes, a condensate film with
thickness d(x) is formed. In general, the film thickness
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Figure 1 Tube bundle model.

increases as the film flows down and more steam con­
denses on it. It will be shown in Sees, 3 and 5 that the
distance between adjacent tubes is small enough to al­
low the film to move downward without losing its con­
tinuity. However, it is necessary to note that in reality
film trajectories may be rather complex. Moreover,
film rupture is quite possible and most probably takes
place on peripheral tubes as a result of the impact by
high-velocity steam flows. The latter subject will be
addressed in Sec. 6. Additionally, condenser tube­
bundle configurations contain a number of peripheral
clearances (Fig. I). Each such clearance represents a
break point where the film continuity may be inter­
rupted. Therefore , for the purposes of this study, the
vertical length of a tube bundle is divided into N con­
tinuous film descents of identical length L.

Depending on the actual distance between the low­
est row of tubes and the average hot well condensate
level, two entirely different possibilities for film be­
havior (Fig. 2) could be postulated:

I(a). The film is being broken into rivulets, then into
droplets, and then the condensate rain reaches
the hot well; or

2(b). The condensate reaches the hot well as a sys­
tem of curtains carrying the steam along .

It is practically impossible to decide which case is
more realistic without an experiment. However, it is

quite reasonable to assume that the condensate aera­
tion process is almost insensitive to the type of film
behavior. This assumption will be verified later (see
Sec. 5).

The film is interacting with the steam flow moving
with velocity U over the entire tube-bundle height.
This velocity is normally within the range of 120-250
fps. It is therefore assumed that air absorption by
films, rivulets, and droplets takes place over the en­
tire length of the condensate descent.

This completes the description of the hydrody­
namic processes within the assumed simplified
model. This model appears to be adequate for estima­
tion of the maximum air quantity captured by conden­
sate throughout the entire condensation process. The
model allows for determination of the relative impor­
tance of various condensation stages to the maximum
condensate air content and for formulation of correc­
tive measures to reduce the condensate air concentra­
tion.

It is necessary to note here that the overall evalua­
tion of such a complex process should never be lim­
ited to theoretical analyses only. Therefore, some ba­
sic measurements required to verify the adequacy of
the theoretical approach will be specified and recom­
mended in this paper.

Finally, it is absolutely essential to define limita­
tions of the suggested model. These limitations are as
follows:
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and

where ng and n~l are the numbers of molecules in the
gas and liquid phases per unit volume under equilib­
rium conditions , respectively, and Pg is the partial gas
pressure. Therefore, Eq. (1) represents Henry's law,
which can be written as

(2)ceq
'Y sol = Pg

Henry's law, however, is not applicable to dissolv­
ing processes under conditions far from equilibrium,
particularly when the time of contact is substantially
smaller than the required relaxation time T. In the
latter situation the gas concentration in the liquid does
not reach its equilibrium value. Therefore, in order to
be able to deal effectively with such situations, it is
necessary to invoke the kinetic laws of solubility.

(1)

2. GAS SOLUBILITY IN LIQUID

1. The model is not expected to produce results more
accurate than order-of-magnitude values.

2. The models does not account for three­
dimensional nonuniformity and complex geometry
of a condenser.

3. The model assumes no oxygen in the low-pressure
turbine exhaust steam flow .

It is also obvious that

An isolated liquid/soluble gas system reaches a
state of statistical or thermodynamic equilibrium after
a certain period of time (relaxation time). In this
state, the number of gas molecules crossing the phase
interface per unit of time (specific speed of solubility
jg) is equal to the number of liquid molecules crossing
the phase interface in the opposite direction, j,ol :

Figure 2 Condensate film behavior models.
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Generally, a dissolving process consists of the
three following stages:

3. CONDENSATE FILM

I . Transfer of gas particles from a bulk to a gas/
liquid interface.

2. Gas particle crossing of a gas/liquid interface, or
actual gas particle penetration into liquid.

3. Removal of dissolved gas particles from a phase
interface into the volume of liquid.

The assumption formulated in Sec. 1 regarding the
formation of condensate film flowing down from the
tube bundle should be analyzed carefully. The fact
that film condensation (as opposed to dropwise con­
densation) takes place in actual situations is rather
obvious . However, the further evolution of that film
is unclear. Four scenarios are possible here:

Each of the above stages proceeds at its own speed,
as shown below. The overall speed of the dissolving
process is therefore limited by the speed of the slow­
est stage.

When easily soluble gases are involved, the effec­
tive surface resistance of the liquid is minimal. In
other words, the overall speed of the dissolving pro­
cess is relatively high. This is exactly the case for air
dissolving in water. Therefore, there are only two
stages that may limit the overall speed of the process :

1. The film moves downward successively from one
tube to another, remaining continuous as long as it
remains within the closely spaced tubing system .
The model formulated in Sec. 1 and depicted in
Fig. 1 is based on this assumption .

2. The film is atomized by the gas (steam) flow.
3. The film loses continuity upon separation from

each tube.
4. The film is totally unstable and breaks into drop­

lets on the surface of each individual tube.

In stage 3, a surplus of air particles is transferred
to the surface S. As a result, the equilibrium condi­
tion will eventually be established at this surface :

In stage 1, every air particle approaching the phase
interface is absorbed without delay. Therefore, the
concentration of the dissolving component C will
eventually be established at the liquid surface S:

I. Stage 1, when the air particle supply to the inter­
face is the limiting factor; and

2. Stage 3, when the removal of the dissolved gas
from the interface into the volume of liquid limits
the overall speed of the dissolving process .

where C:', = air concentration far enough from the
interface . The difference between Eq. (4) and Hen­
ry's law [Eq. (2)] is rather significant. From Henry's
law the concentration is at equilibrium over the entire
liquid volume, whereas in Eq. (4) this equilibrium is
established only at the liquid surface.

It should also be noted here that in the case of very
low process pressure and easily soluble gases, the
coefficient )' is of the order of unity.

We shall discuss each of the above cases.
It is well known that film flow down a vertical or

inclined solid surface is unstable and has a tendency
to break into droplets or rolls [1]. This film instability
is most clearly demonstrated on a convex surface .
However, the latter effect will manifest only when the
film thickness is of the same order of magnitude as
the convex curve radius . Additionally, the length of
the film should reach at least 50-100 film thick­
nesses . The condensate film on any individual tube
falls far short of meeting these conditions. Therefore,
scenario 4 can be ruled out as totally unrealistic.

The process of velocity profile reconstruction
commences immediately in the liquid curtain when
the latter leaves the tube surface. As a result, the
curtain moving in the intertube space is even less sta­
ble than the film on the solid surface. However, the
velocity profile reconstruction progresses rather
slowly. Therefore, the Poiseuillian velocity profile
transforms into an almost rectilinear one, typical for
the curtain, over a length of approximately 30-50
thicknesses. This length substantially exceeds the
normal distance between adjacent condenser tubes.
Therefore, the liquid curtain in the condenser inter­
tube space does not have enough time to appear, let
alone be destroyed. The latter consideration rules out
scenario 2.

A serious threat to the film integrity is posed by
the possibility of film atomization by a steam flow
moving at a high velocity. However, the probability
of film atomization is minimal due to the very low
steam density that exists at the very low condenser
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operating pressures. This case will be analyzed in
Sec .5.

Let us consider now the behavior of the condensate
film appearing on the solid surface. The initial film
thickness ho is small compared with the tube radius
R. Therefore, it is a good approximation to consider
each film surface element as flat. The film flows
down under the force of gravity. If the velocity is V,
the corresponding Reynolds number is

locity of the film descent. Second, steam impurities
(air in our case) are drawn along with the steam dur­
ing the massive condensation process. The latter fur­
ther accelerates the transport of impurities into the
liquid phase.

The velocity distribution in the laminar film flow­
ing down under the force of gravity along the solid
surface is easily derived from the Navier-Stokes
equation with appropriate boundary conditions im­
posed and can be written as:

The film surface is assumed flat with y = h.; and the
solid surface is chosen as a plane y = O. Here
g' = g cos (J, where g is the acceleration due to
gravity and (J is the angle of inclination of the solid
surface. The average velocity across the film section
can be expressed as:

In accordance with the general laws of the theory
of convective diffusion in fluids, if C(x, y, Z, t) is the
concentration of a dissolved substance changing from
point to point in space and time, the flux of substance
is inevitable. If the concentration C is low enough,
the flux density in the moving media can be presented
as

Here the vector j is the mass flux density, i.e ., the
number of particles crossing an imaginary fluid plane
with an area of 1 em' per 1 s; v is the velocity of
liquid; and D is the coefficient of molecular diffu­
sion .

The first term in Eq. (7) represents the convective
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(6)

(7)

(8)(i = x, y, z)

g'
vx = - (2hoY - /)

2v,

vy = 0

Equations (5) and (6) will be used in Sec . 5 .

or, in components,

1 h s' h2
- roo
U = - J v dy =-

ho 0 x 3Vr

4. CONVECTIVE DIFFUSION IN MOVING
FLUIDS

j = CV - DVC

where Re~ = condensate Reynolds number
v, = condensate kinematic viscosity at tem­

perature approaching T = (TlUbe +
Tgas) 12

T.ube = tube surface temperature
Tgas = film surface temperature

The steady flow of the thin film establishes itself rap­
idly, over a length equal to only a few film thick­
nesses . However, film thickness continues to increase
as a result of the ongoing massive condensation pro­
cess and the influence of steam flow. The film thick­
ness increase associated with the heat balance of the
moving film is unquestionably an extremely interest­
ing subject for a special investigation; however, it is
outside the scope of this study. Influence of steam
flow on the film is discussed in Sec . 6.

If hex) is the film thickness for the film that has
covered a distance x from the point of its creation, the
local Reynolds number Rex = U(x)h(x)/v, and in­
creases with the distance. When Re == 20, waves
start to appear on the film surface. Further develop­
ment of these waves leads to the loss of film stability
and to its breakdown into the system of rolls. Com­
plete film breakdown takes place before the Reynolds
number Rex reaches the critical values of approxi­
mately 1600-1800, after which the film flow be­
comes turbulent. Based on the above, it appears that
film rupture may occur not as a result of hydraulic
instability, but due only to the presence of large inter­
tube ligaments that might be a part of the condenser
geometry. It is therefore possible to assume (as a first
approximation) that the film flow is laminar and that
its thickness is fixed . An effect that the wavy charac­
ter of the flow and its variable thickness makes on the
mass transfer will be addressed later (see Sec. 5) .

It is reasonable to assume that the convective diffu­
sion of gas is the slowest and, therefore, the limiting
aspect of film flow aeration. There are two reasons
supporting this assumption. First, the steam velocity
with respect to the film substantially exceeds the ve-

heat transfer engineering

, Uho
Reo = ­

v,



velocity distribution can be safely neglected . More­
over, since the case under consideration is steady­
state, or almost steady-state, the dependence of ve­
locity and concentration on time can also be
neglected. As a result, Eq. (12) is further simplified
to

(passive) transfer of substance by the moving fluid.
The second term represents the molecular flow di­
rected from places with high to places with low con­
centrations.

Let us consider some arbitrary volume V in a body
of fluid and find the net flow of particles of the dis­
solved substance entering and leaving this volume per
unit time. The change in the number of particles in
the volume V is equal to Q "" aN/at. The number of
particles passing through the surface S surrounding
volume V per 1 s is DdS, where the integral is taken
over the entire surface, and the direction outward
from the surface is chosen as the positive direction
for the normal vector.

Equating the integral flux Q to the change in the
number of particles in the volume V, we obtain:

(V grad) C = DVe

or, in coordinates,

v ac +
x ax

(13)

(14)

The integral on the right side of the above equation
can be converted according to the Gauss theorem so
that

) (~~ + div j) dV "" 0 (9)

To find a full solution of the problem, i.e., to find a
field of concentration e(x, Y, z), we must also know
the proper boundary and initial conditions.

In order to clarify the qualitative picture of the
mass transfer process, it is necessary to transform
Eq. (14) to the dimensionless form . If L is a charac­
teristic dimension of a system (a tube radius, a size of
the dissolving body, etc.) and U represents a charac­
teristic fluid velocity, then by introducing dimension­
less ratios

In view of the arbitrariness of volume V, the above
condition is satisfied only if

it is easy to rewrite Eq. (8) as follows :ae + div j "" 0
at

(10)

Xix=­
I L

Viv=­
I U

c
C=-

C'"

or, substituting Eq. (7),

aa~ + div(CV) - D div grad e = 0 (11)

(
V ae +

x ax

Remembering that in the incompressible liquid div
V "" 0 and neglecting the dependency of D on con­
centration (and, therefore, on coordinates) , we ob­
tain:

(15)

where Pe = UUD is the dimensionless Peclet num­
ber. It is easy to see that

aeat + (V grad) e "" div D grad C (12) Pe = UL = UL V = Re (::...)
D II D D

Re'Pr (16)

Equation (12) describes the mass transfer process in a
moving liquid and is called "the equation of convec­
tive diffusion." Fluid velocity V in Eq. (12) is as­
sumed to be a known function of coordinates and
time. Since the fluids under consideration are charac­
terized by very low concentrations of various impuri­
ties, the reverse influence of concentration change on

where the diffusion Prandtl number (or Schmidt num­
ber) is

The first term in parentheses in Eq. (15) character­
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When the fluid is moving along the solid surface, the
thickness of the hydrodynamic boundary layer in­
creases proportionally to the distance x:

to that of Prandtl 's hydrodynamic boundary layer.
Moreover, the thickness of the diffusion boundary
layer 0' is correlated with the thickness of Prandtl's
hydrodynamic boundary layer Do by the equations

for gases

(19)

(20)

(21)

for liquids(
V)/3

0' == - 00
D

izes the convective mass transfer into the moving
fluid. The second term in parentheses in Eq . (15)
characterizes the mass transfer by means of molecu­
lar diffusion. All dimensionless terms in Eq. (15)
have, generally speaking, an order of magnitude of
unity. Therefore, the relationship between the diffu­
sion and convective mass transfers is characterized
only by the dimensionless number in Eq. (15), i.e.,
the Peelet number. In the case under consideration,
the Peelet number is always substantially greater than
1. In the case of the steam phase, Pr == 1, but
Re ~ 1 and, therefore, Pe ~ 1. For a liquid film Re
can vary approximately within the range 1-10-500,
but Pr == 103

• Therefore, Pe ~ 1. This means that in
our particular case the diffusion mass transfer part of
Eq. (15) can be neglected, and the entire equation can
be simplified to

qo, y) = 0 C(x, 0) = 0 C(x, ho) = C q (23)

5. CONVECTIVE DIFFUSION IN THIN
LIQUID FILMS

It is our aim to determine the diffusion flux density
(i.e., the number of particles crossing 1 em' of sur­
face per 1 s):

(22)

(24)

In the case where the absorption occurs into an
initially pure liquid and eqilibrium concentration Ceq
is reached fast enough on the liquid surface, the sys­
tem of boundary conditions can be written as:

This particular fact has necessitated additional con­
sideration of the mass transfer process in thin moving
films. Generally speaking, usual expressions derived
for deep fluids are no longer applicable to cases in
which the boundary-layer thickness becomes compa­
rable to the film thickness. In cases of sufficiently
long films (i.e., with large values of x), the latter
situation appears to be quite realistic.

g I ec (a2C a2C)

-(2hoY -l)- = D - +-
2Vt ax ax2 al

In accordance with the previous assumptions re­
garding laminar and waveless liquid film flow, along
a solid surface of small convexity, the convective dif­
fusion equation is derived by combining Eqs. (5) and
(14) as follows:

. D (aC) I
J = ax y-ho

(18)

It is obvious that C = const is a solution of Eq. (18) .
However, it is also obvious that the solution C =

const does not satisfy the boundary conditions speci­
fied in Sec. 2 and therefore is not an acceptable solu­
tion of the mass transfer equation. Actually, until the
mass transfer process is complete (which in our case
means that the equilibrium air concentration is estab­
lished throughout the entire phase volume), concen­
trations at the phase interfaces and in the bulk of the
phase will differ. This seeming contradiction could be
easily removed by taking into account the fact that, in
the actual process, the concentration in the immediate
vicinity of the interface changes very rapidly from
point to point. This means that here the derivatives of
concentration with respect to distance are very large.
In other words, mass transfer is determined by mo­
lecular diffusion as well as by convection near the
interface. As a result, the terms in the second set of
parentheses in Eq. (15) are so large near the special
surfaces (such as the phase interface) that, despite the
small coefficient liRe associated with the parenthe­
ses, the second term in parentheses is still of the same
order of magnitude as the first term in parentheses.
This means that if Pe ~ 1, the concentration is prac­
tically constant throughout the entire fluid volume ex­
cept in the phase interface area. The latter is charac­
terized by the presence of a very thin layer, called the
diffusion boundary, where practically all concentra­
tion changes take place. In this region mass transfer
takes place by means of both molecular diffusion and
convection.

The diffusion boundary layer plays a role similar
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If j(x) is known, the total flux can be easily deter­
mined as follows:

(32)ccr = ~ - (3f(T, z)z ... 1/

Here the functions COl, ell, ... , etc., are depen­
dent not only on the coordinates but also on the pa­
rameter a.

The goal here is to determine densities of the flux
of particles moving from the surface into the film.
The calculations show, however, that an attempt to
find the terms of the series (31) by means of the usual
perturbative method (the method of sequential ap­
proximations) leads to a mathematically incorrect ex­
pression for the diffusion flux. The expression for the
normal derivative of concentration in the first approx­
imation is proportional to 1/~ 1/2. This means that the
flux along the entire surface [expressed by the inte­
gral (25)] diverges (tends to infinity) . Obviously, this
does not make any physical sense. This paradox is
well known from similar problems , in particular from
Prandtl's theory of the hydrodynamic boundary layer.

Poincare developed a special technique to solve
this type of equation by expanding into a series in
powers of small parameters not only the function
C(t, 1/) itself, but also the independent variables. Let
us introduce new variables:

(25)

(28)

(27)

(26)

J -= I j(x) dS

x
t-=­

L

It is now convenient to introduce dimensionless vari­
ables:

In our particular case, by definition, the Peclet num­
ber is

Using the variables ~ and 1/, Eq. (22) and boundary
conditions (23) can be written as:

C(~, 1(1/, a) -= C (Ol + ec» + (32C(2l + . .. (31)

26 heat transfer engineering

It is obvious that a and {3 are very small compared to
unity and that {3 ~ a .

It is necessary to note here that in the case of a
substantially deep fluid it is possible not to account
for the velocity distribution in the depth and to re­
strict ourselves to the approximation of the free sur­
face velocity. This leads to an essential simplification
of the problem. In the case of a thin film, however, it
is not at all obvious. Substitution of a real velocity
profile by a linear profile could result in a substantial
qualitative error for a thin-film situation. Therefore,
it appears to be necessary to carry out consistent cal­
culations in order to find the solution to the set of
equations (28)-(29). The solution of this problem can
be found by expanding into an infinite series in
powers of the small parameter (3:

C(O,1/) "" 0

C(t,~) -= 0

C(~, 0) -= Ceq

The solution of this equation is well known . That is,
the solution of Eq. (33) with proper boundary condi­
tions [Eq. (29)] can be written as:

(33)

(34)

(35)

where erf, as always, is

C(Ol(T, z) = Ceq erf (~)
2-1;

The equation for ell can now be found by substitut­
ing for (34) in (31) and (28). In the first approxima­
tion (first order of the small parameter (3), we have
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where f(T, z) is some arbitrary function which will
later be selected in such a manner as to permit the
elimination of a dangerous singularity manifesting it­
self at the point ~ ... O.

Equations for CO) and ell are obtained from Eq.
(26) rewritten in new variables. Limiting ourselves to
the first term of the series, we arrive at the equation
for COl:

ac(Ol a2c(O)

--=--
aT at

2 rx
erf(x) ... - J e- t2 dt";;0

(29)

(30)1 (h)2
{3 -= Pe ;and

where

ho
a "" -

L



where A I and A 2 are arbitrary constants. In order to
determine AI and A z and therefore the function f(r) ,
let us find the density of the diffusion flux at the
liquid surface:

oCll) _ oe
ll)

= Ceq' Z • exp (_ l)
or ol 2V-rri 4r

.[l + of _ 02f + of (~ _ ~) _ (1- + L)]
or ozz OZ r r 2r 4l

(36)

Boundary conditions can be expressed as follows:

j(~) = D(dC)
dY y - ho

(41)

CO) - - Ceq(41fl)-1 /2 lim[.if(r, z)e- l /41] (r > 0)
z- co

Cll) - -Ceq(4-rrr 3
) - 1/2 lim [V{r, z)] (r > 0)

z- co

CO) = 0 (t = 0, Z > 0)

(37)

Lengthy but straightforward calculations show that
j(~) cab be expressed by the Eq. (42) below with an
accuracy of up to factors of.,jI£ inclusive:

j(O = DCeq Vex Pe [1 __1_~
ho -rr~ Ceq Pe ex

The flux density j should remain integrable, i.e.,
without singularities of 1I~312 type.

In order to ensure that the above requirement is
met, it is necessary for f to satisfy the equality

The analysis shows that the dangerous divergence in
the derivative from e l

) in the limit z - 0 (lIl/2 type)
is determined by terms in Eq. (36), namely:

. [dC<I) _ Ceq...r;; lim (z df(~, z»)]]
dZ 2 -rr~3 z- O Bz

(42)

Let us select a function f( r, z) in such a manner
that it will eliminate the above terms from Eq. (36) .
In order to accomplish this, the function /(r, z)
should satisfy the equation:

lim [z d/(~, Z)] < 00

z-O oz x>o (43)

Condition (43) is the complete definition of the func­
tion f(~, z) or fin. It follows from expressions (40)
and (42) that AI = O. The constant A 2 is neither a
term of the equation for f(~, z) nor part of the bound­
ary conditions . Therefore, it can be assumed that
A z = 0 also. Finally,

of + of (~ _ ~) _ iif = 1- (1 _l) (38)
Br dZ r z at 2r 6r

Since Eq. (38) is a partial differential equation, the
function Itr, Z) is not completely determined by this
equation. Additional conditions (equivalent to bound­
ary conditions) that could be imposed on the function
f(r, z) will be formulated a little later [see Eq. (43)] .
Meanwhile, let us notice from the appearance of Eq.
(38) that/(r, z) is a self-similar function of variables
rand z. Assuming that r = zlVT; we can obtain the
equation for f(n in total derivatives:

t' t
f(r) = - - = - -

4 4r

As a result, after simple calculations we obtain

(44)

f"(n + (~ - 1) f'ef) = r
2

- ~r z 4 2
(39)

(45)

The general solution of the above equation can be
expressed as follows:

Substituting for (44) and (45) in (42); the final ex­
pression for the diffusion flux density into the depth
of film is derived:

f(n =
r2 A l 2_ -- er /4

4 r

[

CO 1 r2k
+

2
]

. l+.r:;o r-rr:' 2k+J (k + I)!! + A 2 (40)

(46)

or, in dimensional form,
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c .J3DU [1 _(--.!!.-) L]
eq 27rx 2hoO ho

(47)

that over the solid surface, turbulization of a laminar
boundary layer can take place when the effective
Reynolds number of this boundary layer exceeds the
critical value:

where a is the amplitude and A is the wavelength. As
long as the film is stable, A is larger than a. The
influence of the wave movement on the diffusion flux
is proportional to~ and, therefore, is relatively
small.

The second, less obvious but very important, as­
sumption deserves special discussion. Therefore,
Sec. 6 is dedicated to this subject.

The full flux of impurities per unit time is determined
by the integral (45).

Before discussing the above results, let us briefly
address the assumptions employed.

The first assumption concerns the waveless flow
regime . It is absolutely certain that the films flow
down in the wave regime when Re > 20. However,
it is reasonable to disregard surface waves for this
preliminary type of analysis. As was proved by Bren­
ner [5], the wave-type movement leads to the substi­
tution of the diffusion coefficient by the effective dif­
fusion coefficient, equal to:

(49)

(50)

aty = h

where h is the film thickness determined by the con­
dition

RCtx,und .layer :=::: ~ :=::: 1600

If, for example, Uga> - 30 mis, III - 0.1 (for gas at
standard conditions), then L - 5 m. Most probably
the value of L is overestimated here , since in reality
the film surface is mobile and rough due to the pres­
ence of capillary waves. Nevertheless, the boundary
layer is turbulized, not instantaneously but most
probably over a length L close to I m.

If the above is sufficiently accurate, it makes sense
to analyze the laminar boundary layer of gas moving
along the laminar, smooth, mobile film. The continu­
ity of the tangential velocity and stress tensor compo­
nents on the liquid surface gives us the boundary con­
ditions:

(48)o.; = D [1 + const (~)]

(51)

(52)

(53)

at y = h

VI
(J,=­

I 0

where Q is the total flow. Substituting for dimension­
less parameters

where v;' is the gas velocity far from the interface
and U is the average film velocity, we find:

The dimensionless parameter E) is obviously small
compared to unity. It is interesting to note that the
parameter E2 is also smaller than unity under the con­
ditions under consideration. Assuming that
v;'IU = 30 but that IL/J.'I = 2 X 10- 2

, it can be de­
rived that E2 :=::: 0.6. The latter has the following in­
terpretation:

6. STEAM FLOW/FILM INTERACTION

The interaction of film with the flow of steam is an
important issue requiring further clarification. In
principle, the fast-moving steam flow might either at­
omize a film or carry it along as a whole . Despite the
fact that there is no precise quantitative theory re­
garding the liquid surface interaction with the turbu­
lent flow of gas (steam), it is possible to formulate
some qualitative considerations. Let us analyze an
ideal situation of the flat liquid film interaction with
the flow of gas, depicted in Fig. 2(a).

It will be shown in this section that the situation in
which the gas is moving along the film is not very
different from a situation in which the gas is flowing
along a flat, solid surface. In the flow of gas flowing
over the film surface, the laminar boundary layer is
in the initial process of being established. This layer
can be turbulized under some definite conditions.
This turbulization can take place over the length L if
the gas velocity is high enough. If, as shown below,
the Reynolds number of the flow of gas over the liq­
uid boundary layer does not differ substantially from
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1. If 1:1 = 0, the velocity distribution in gas coin­
cides with the velocity distribution in gas over­
flowing the solid surface.

2. If 1:1 < 1, it is possible to determine U, by means
of the method of consecutive approximations :

destruction can take place. The maximum scale of the
gas pressure fluctuations is determined as follows :

where c.l,0) coincides with (5). The latter thickness
changes when the flow of gas drags the film along. It
can be written by analogy with Eq. (55) that

where UJ.n) is the correction to the velocity distri-
buti 0)ulion g'

On the other hand, when 1:2 = 0, the boundary
condition on the film surface coincides with the
condition for the free film flow [which leads to the
velocity distribution (5)] . In this case the moving
gas does not drag the film along.

(58)0' = D Dt.C = fuDX
j 30

7. CONCLUSIONS AND
RECOMMENDATIONS

Despite its simplicity (or perhaps because of it),
Eq. (47) allows us to draw a number of important
conclusions:

1. The first term in this equation corresponds to
the situation where the liquid film thickness 0I ,

which effectively resists the dissolving process (the
diffusion boundary-layer thickness) , is small com­
pared to the depth of the liquid ho. By definition,

with Pg ::= 10- 5
, V;::= 30 mis, a ::= 40 din/ern",

Pg( v;'l ::= 102
, 01ho ::= 4 X 102

• Although this esti­
mate is very rough, it clearly demonstrates that film
destruction at low-pressures is impossible even for
substantial steam velocities. Film destruction can take
place only under special circumstances associated,
for example, with extremely high steam flow veloci­
ties or local film nonuniformities.

Overall, it is our impression that the film remains
intact until it leaves the lowest tube . Of course, the
latter statement should not be taken literally. Under
nonuniform conditions as exist in actual condensers,
a hydrodynamic situation could make it possible for
the steam to encounter and break the film in some
weak spots. This would trigger complete film de­
struction in weak areas. Therefore , it is reasonable to
expect that in an operating condenser some film
breaks and droplets will be found, especially in pe­
ripheral areas and steam flow clearances. However, it
is still possible to conclude that generally film-type
condensation prevails throughout the condenser.
Film-type condensation is further assured by mini­
mum deviations from the properly selected small ra­
tio of a ligament to a tube diameter.

It is obvious that the most unfavorable scale for A is
A ::= ho. Therefore, the more favorable condition for
film rupture is

(57)

(56)

(55)

(54)r ,(0) r ,(1) 2 r ,(2)
U, = U g + I:IUg + I:IUg + . . .

If 1:2 <!iii 1, it is possible to write:

[ (
if: )1/2 1 ]

h = h« I ± 0.3 1:2 --:!-.!- --
UI ho ~

U r,(O) rl<l) 2 r 1(2)
t = U i + €2Ui + 1:2U ; + . . .

where the ( - ) sign is associated with the counterflow
situation . The inequality h <!iii ho means physically
that the film can be atomized by the steam flow. Cal­
culations based on Eq. (57) show, however, that the
complete turbulization of the hydrodynamic boundary
layer is reached before atomization takes place.

Let us now consider the possibility of rupture and
atomization of a film by fully turbulent gas flow. For
this purpose let us consider a pressure fluctuation p'
in a turbulent gas flow. If p' < 0, the gas flow acts
as if it sucked out roughnesses of effective size A
from the film. In this case, a capillary pressure of ol).
is created on the film surface, where a is the surface
tension. If the inequality p' > al); is fulfilled, liquid

Correction factors «I), c.l,1), and h(l) were determined
after simple but lengthy calculations . What is impor­
tant here is that if 1:1 and 1:2 are small, correction fac­
tors to the velocity distributions are also small. This
means that the flow of gas is not capable of destroy­
ing the film integrity (at least in the case of laminar
gas flow).

As a result of the calculations, the following equa­
tion is obtained for the film thickness :
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Due to a very small Iiquid diffusion coefficient D, the
condition 0' ~ ho is satisfied even for relatively long
and thin films.

The second term in Eq. (47) accounts for a possi­
ble influence of the finite film thickness on the mass
transfer process. This term is directly proportional to
the small parameter (or inversely proportional to the
Peclet number). Simple estimation shows that, de­
spite the fact that this term includes the large numeri­
cal parameter L/ho, it is still small compared to the
first term. Therefore, on the basis of qualitative anal­
ysis, it is possible to conclude that the mass transfer
rate is determined primarily by the film surface ve­
locity. This is a significant conclusion, since it can be
used to prove that if the slow stage of the air­
dissolving process is the convective diffusion in the
liquid film, the rate of the convective transfer process
is the same as in a film moving with the same veloc­
ity as its surface. The mass flux is proportional to the
average film velocity and increases with film thick­
ness. Conversely, the dissolving process is not depen­
dent on film thickness under a given flow-down ve­
locity. Here a substantial difference between the
dissolving and the heat transfer processes is found. In
the heat transfer case the dimensionless Peelet num­
ber is

Petherm =
UL UL v
- = -- l:::I Re . Prtherm

K v K

appears that the assumptions regarding film continu­
ity and simplistic film flow-down geometry are not
very important. Condensate, for example, could wan­
der inside a tube bundle, or partially disintegrate into
droplets . Nevertheless, the general character of the
convective diffusion process will remain practically
unchanged. A rate of dissolving could be estimated at
least qualitatively in accordance with the first term of
Eq. (47) ..However, it is important to determine not
only the dissolving rate but , most important, the full
amount of gas dissolved in the condensate or, more
precisely, oxygen concentration in the condenser hot
well .

The net mass of dissolved gas could be determined
as:

J = (1) dX) . H' N ::::: (JDOL) NHCeq (59)

where L = film traveling length, H = film width,
and N = number of films. The volume of liquid
reaching the hot well per unit of time is

v = OhoHN

The J/V ratio, which IS of interest here, could be
expressed as:

In conclusion, we would like to formulate a prob­
lem which, in our opinion, is of substantial interest.
Namely, some optimum situation characterized by
maximum achievable condensation with minimum
achievable oxygen absorption should exist. Indeed,
the hot well oxygen concentration decreases with de­
creasing length L and increasing film thickness. On

This expression contains only one unknown, ho. It is
necessary to stress here that the expression obtained
for the ratio r determines the upper limit of the gas
concentration C in the hot well . The complete equa­
tion (47) for j gives smaller values of C. However,
the order of magnitude of the latter remains the same.
What is more important here is that impurity concen­
tration could vary throughout the condenser.

Assuming reasonable values for ho ::::: 0.2-0.3 cm
and L ::::: 102 em, the following is obtained for the
ratio r:

where K is the thermal conductivity coefficient and
Pr'hcrm is the thermal Prandtl number. The Prandtl
number is.not too large for water at temperatures be­
tween 90 and 100°C . Therefore, in a film moving in
a laminar regime, the temperature drops through the
entire film thickness, that is, c5l~erm ::::: k., The film
thickness increase (under a fixed-flow-rate condition)
affects negatively the heat transfer process. Although
this problem lies outside the scope of this work, it is
necessary to point out that dropwise condensation ap­
pears to be more effective than film condensation.
Furthermore, it appears reasonable to assume that
some optimum distribution for the droplet and film
condensations could be found for a given required
condensation flow rate .

2. The fact that (under the assumptions of this
study) the dissolving is determined primarily by the
film surface velocity is important from one more
viewpoint. Namely, in a first approximation it is
known that, the convective diffusion process in a liq­
uid is determined by its free surface velocity under a
variety of essentially different conditions , such as
film, film in a gas flow, droplet, etc . Therefore, it

(60)
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the other hand, the very same factors decrease con­
densation efficiency. No condensation theory for
flowing films exists at present. The development of
such a theory, first, is long overdue, and second,
would be instrumental in finding the above­
mentioned optimum values for condensation and air
absorption.
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