ON THE ROLE OF POLARITY OF ADSORBATE AND SOLVENT MOLECULES IN ADSORPTION OF ORGANIC SUBSTANCES ON ELECTRODES

B. B. DAMASKIN AND A. N. FRUMKIN

University of Moscow (U.S.S.R.)

(Received 24th March 1971; in revised form 18th June 1971)

Adsorption of organic substances on electrodes involves interaction of solvent and adsorbate dipoles with surface charges. However, in our treatment of adsorption of organic compounds 1-5 attention was primarily focussed on the influence of the adsorption of organic molecules on the double layer capacity, and relatively less attention was given to the role of the polarity of molecules. According to the theory of Bockris *et al.*^{6,7} it is the interaction of water dipoles with the double layer field and the mercury surface which determines the dependence of the adsorption of aliphatic compounds on the electrode charge. It is of interest to consider this problem in more detail on the basis of recent experimental data on adsorption of various aliphatic compounds with different effective dipole moments at the interface of a mercury electrode with aqueous solutions.

As follows from experimental data, the dependence of the electrode charge q on its potential E in aqueous solutions containing different concentrations of an aliphatic organic compound has the characteristic shape shown in Fig. 1. On the basis of such dependences it is easy to conclude that the q, E-curves for different concentrations of the organic substance are confined between two limiting curves: (i) $q_0 - E$ and (ii) $q_1 - E$, which characterize the dependence of the electrode charge on its potential for the pure supporting electrolyte solution and at the surface coverage with organic substance $\theta = 1$ (see Fig. 2). If no account is taken of the potential drop localized completely in the metal phase, the shift of the potential of zero charge upon transition from $\theta = 0$ to $\theta = 1$, designated by us E_N (Fig. 2), will be equal to the difference

$$E_{N} = \chi_{1}^{q=0} - \chi_{0}^{q=0} \tag{1}$$

where $\chi_1^{q=0}$ and $\chi_0^{q=0}$ are the potential drops due to oriented adsorption of organic substance dipoles (subscript 1) and water (subscript 0) respectively* on the uncharged mercury surface.

Of a more complex nature is the potential shift ΔE , characterizing the transition from $\theta = 0$ to $\theta = 1$ at $q = \text{const.} \neq 0$. Let us denote by C_0 and C_1 the differential

^{*}According to the B.D.M. theory 6 $\chi_1^{q=0}=0$ and hence the value of $E_{\rm N}$, in this case determined by displaced water dipoles, should be the same for all aliphatic compounds. In the later paper of Bockris $et~al.^7$ an eqn. (21) is given which contains a term taking account of the dipole effect of adsorbed organic molecules. This should influence the position of the point of intersection of curves 1 and 2 on Fig. 2(see below). However, at the end of this contribution the authors state "that solvent–field and solvent–solvent interactions are the most important contributions to the changes in the free energy of adsorption when the interfacial charge density is varied" that is, the solute–field interaction is considered as of secondary importance.

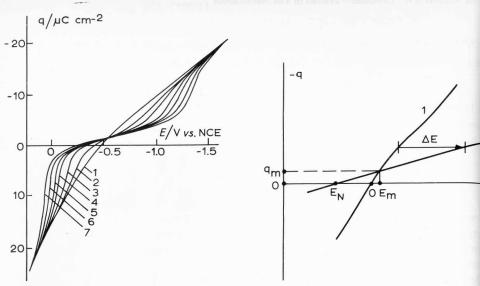


Fig. 1. Dependence of the mercury electrode charge on potential in 0.05 M Na₂SO₄ solns. with difference of the mercury electrode charge on potential in 0.05 M Na₂SO₄ solns. additions of n-butyl alcohol: (1) 0, (2) 0.05, (3) 0.1, (4) 0.2, (5) 0.4, (6) 0.6, (7) 0.8 M.

organic substance on the electrode surface, (2) complete coverage of the electrode surface with organic substance.

capacities of the double layer in a pure supporting electrolyte solution and at comple surface coverage with organic substance, respectively. Then for electrode charges $\theta = 0$ and $\theta = 1$ we shall have the expressions

$$q_0 = \int_0^E C_0 dE = \overline{C}_0 E$$

and

$$q_1 = \int_{E_N}^{E} C_1 dE = \bar{C}_1 (E - E_N)$$

 $E_0 = q/\overline{C}_0$; $E_1 = E_N + q/\overline{C}_1$ and

$$\Delta E = E_1 - E_0 = E_{\mathrm{N}} + q \left(1/\overline{C}_1 - 1/\overline{C}_0 \right) = E_{\mathrm{N}} + q \left(\frac{4\pi \delta_1}{\varepsilon_1} - \frac{4\pi \delta_0}{\varepsilon_0} \right)$$

where δ_i is the surface layer thickness and ε_i its dielectric constant, which is a function of the electrode charge and accounts both for the reorientation effects of organic water dipoles and the polarizability of adsorbed molecules.

Although an unambiguous splitting of the Galvani potential into its comp nents determined by the orientation of the dipoles and the double layer charge respectively, is impossible and depends on the choice of a particular model (set for example, refs. 8–10), for convenience in further treatment we shall carry out the division and, as before, will ignore the change in the electron density distributionally nothing about this potential drop.

within the metal upon transition from $\theta = 0$ to $\theta = 1$ *. Thus, in accordance with eqns. (1) and (4), we can write:

$$\Delta E = \chi_1^{q=0} - \chi_0^{q=0} + \Delta \chi_1 - \Delta \chi_0 + q \left(\frac{4\pi \delta_1}{\varepsilon_1^0} - \frac{4\pi \delta_0}{\varepsilon_0^0} \right)$$
 (5)

where $\Delta \chi_i$ are the changes in the surface potential drops determined by the oriented adsorption of dipoles of organic substance (subscript 1) and water (subscript 0) which are caused by the electrode charge and ε_i^0 is the dielectric constant of the surface layer depending only on the polarizability of adsorbed molecules.

According to the B.D.M. theory, the point of intersection of curves 1 and 2 in Fig. 2 determining, as follows from the thermodynamic electrocapillarity equation, the charge $q_{\rm m}$ (corresponding to the maximum adsorption) should not depend on the adsorbate nature.

The theory based on the two parallel capacitors model makes use of the value of E_N found by extrapolation and the experimental curve of the $q_0 - E$ dependence, obtained by integration of the experimental C_0 -E curve. Thus, account is taken in ean. (5) of the terms:

$$\chi_1^{q=0} - \chi_0^{q=0}$$
 (= E_N) and $-\Delta \chi_0 - \frac{4\pi \delta_0}{\varepsilon_0^0}$ (= $-q/\overline{C}_0$)

Fig. 2. Limiting dependences of the electrode charge on its potential, corresponding to: (1) absence regardless of what the components of E_N and q/\overline{C}_0 actually are. Further, it is assumed in this theory that $C_1 = \overline{C}_1 = \text{const.}$ and, hence $4\pi\delta_1/\varepsilon_1 = 4\pi\delta_1/\varepsilon_1^0$, i.e. in eqn. (5) $\Delta \chi_1 = 0$. Thus, the theory assumes that the possible change of the limiting orientation (at $\theta = 1$) of organic dipoles with the change of electrode charge makes an insignificant contribution to the total value of ΔE . This assumption could be avoided if the dependence of C_1 on E were known. Unfortunately, however, it is impossible to obtain by experimental means the $C_1 - E$ curve since water molecules cannot be completely eliminated from the surface layer (see also ref. 11). The assumption $\Delta \chi_1 = 0$ introduces certain errors into the theory. Owing to these errors, in comparing theory with experiment the value of E_N calculated from the drop in adsorption potential at q=0 $(E_{q=0})$ proves to be somewhat different from that of E_N found from the position of the maximum adsorption potential E_m , i.e. at $q = q_m$.

According to the theory based on the two parallel capacitors model, the $q_1 - E$ where the potential E is read from the point of zero charge at $\theta = 0$, and \overline{C}_0 and \overline{C}_1 all curve and hence the maximum adsorption charge q_m , depend on the nature of the the double layer integral capacities at $\theta = 0$ and $\theta = 1$, respectively. If $q_0 = q_1 = q$, the organic substance, the dipole moment value, the kind of orientation of these dipoles on the electrode surface and on the size of the organic molecule, i.e. on all the factors determining the values of $\chi_1^{q=0}$, δ_1 and ε_1^0 contained in eqn. (5).

> To verify these conclusions let us consider two relations obtained from the two parallel capacitors model at $C_1 = \text{const.}$

$$E_{q=0} = E_{\rm N} C_1 \theta / \left[\overline{C}_0 (1 - \theta) + C_1 \theta \right] \tag{6}$$

and

$$E_{\rm m} = -E_{\rm N} C_1 / (\bar{C}_0 - C_1) = q_{\rm m} / \bar{C}_0 \tag{7}$$

This approximation, which might be an important source of error, cannot be avoided as we know practi-

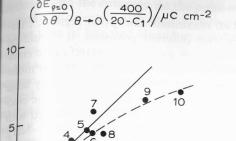
It was pointed out^{3,5,11} that for many organic substances the dependence $E_{a=0}$ follows eqn. (6). For solution of the problem under consideration in the present pape. of particular interest is the verification of the relation between $E_{\rm m}$ and $E_{\rm N}$ expresses by eqn. (7). However, since E_N cannot be determined directly from experimental d_{ab} 10with sufficient accuracy, it is expedient to use a somewhat different approach. follows from eqn. (6) that $(\partial E_{q=0}/\partial \theta)_{\theta\to 0} = E_N C_1/\overline{C}_0$. Finding thus an expression for $E_{\rm N}$ and substituting it into eqn. (7), we obtain

B. B. DAMASKIN, A. N. FRUMKI

$$q_{\rm m} = -\left(\frac{\partial E_{q=0}}{\partial \theta}\right)_{\theta \to 0} \left(\frac{\overline{C}_0^2}{\overline{C}_0 - C_1}\right)$$

Thus, according to the two parallel capacitors model, the dependence of the quantil $(\partial E_{a=0}/\partial \theta)_{\theta \to 0} (\overline{C}_0^2/(\overline{C}_0 - C_1))$ on $-q_m$ should be a straight line with unit slope. Figure 1. 3 shows such a dependence plotted by us from experimental data obtained in re-12–22 for various aliphatic compounds. In this case the value of $(\partial E_{a=0}/\partial \theta)_{\theta\to 0}$ w determined on the basis of electrocapillary measurements in solutions containing to the first approximation was taken to be 20 μ F cm⁻² for all systems.

It follows from Fig. 3 first of all that the maximum adsorption charge does n remain constant and depends on the nature of the aliphatic compound*. Second, as clear from Fig. 3, at $q_m \le 5 \mu \text{C cm}^{-2}$ the experimental date are in good agreement w the theoretical dependence shown in the Figure by the solid line**. Hence, under the conditions the assumption of the constant limiting orientation of organic dipo $(\Delta \chi_1 = 0)$ is valid. Finally, Fig. 3 shows that the assumption $\Delta \chi_1 = 0$ is invalid for con pounds with large $q_{\rm m}$ values. In this case, as would be expected, the value of $E_{\rm N}$ c culated by means of eqn. (6) at q=0 proves to be less than that found from eqn. at $q = q_m$: the appearance of a negative charge on the electrode increases the orien tion of organic dipoles with their positive end to the electrode surface. This eff seems to be the more pronounced the greater the potential drop caused by adsorpti of organic substance on the uncharged mercury surface. This assumption correspon to the dashed line in Fig. 3, which expresses the experimental results better.


In the case of a very strong dependence of the orientation of adsorbed dipol ___ C-C_O/µF cm-2 on the electrode charge it is impossible to restrict oneself to introducing correction into the two parallel capacitors model, since in regions of different charge two limit adsorbate states can be realized, characterized not only by different dipole orient

* The maximum adsorption of many aliphatic alcohols and acids is observed at $q_m \approx 2 \mu \text{C cm}^{-2}$. Acco ing to the B.D.M. theory, this q_m value corresponds to $\chi_0^q = 0$ (equal number of water molecules in the face layer oriented in opposite directions). However, this q_m value can be obtained from eqn. (7) and experimental value of E_N without any assumptions concerning the orientation of water molecules. In as follows from eqn. (7)

$$q_{\rm m} = -E_{\rm N}C_1 \overline{C}_0/(\overline{C}_0 - C_1)$$

Substituting in eqn. (9) $E_N = 0.3 \text{ V}$, $\overline{C}_0 = 20 \mu\text{F cm}^{-2}$ and $C_1 = 5 \mu\text{F cm}^{-2}$ (values characteristic of this cs) we find $q_{\rm m} = 2 \, \mu \rm C \, cm^-$

we find $q_m = 2 \mu \text{C}$ cm. ** The results obtained recently for ethylene glycol²³ are close to our results for propylene glycol (points 4. Change of differential capacity of a mercury electrode in 0.05 M Na₂SO₄ soln. upon addition to the on Fig. 3).

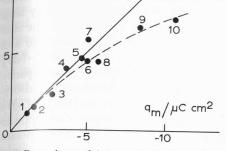
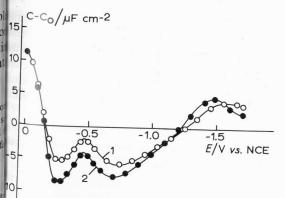



Fig. 3. Dependence of the quantity $400/(20-C_1)(\partial E_{q=0}/\partial \theta)_{\theta\to 0}$ on the charge corresponding to maximum adsorption. Solid line corresponds to eqn. (9); points are exptl. data obtained for the following substances: different concentrations of the organic substance. The values of $q_{\rm m}$ and C_1 were four (1) glycerol, (2) different aliphatic alcohols and acids, (3) n-amylamine, (4) 1,2-propyleneglycol, (5) dipropyleneglycol, (5) dipropyleneglycol, (6) distributions (7) distributions (8) and acids, (3) n-amylamine, (4) 1,2-propyleneglycol, (5) dipropyleneglycol, (6) distributions (8) and acids, (6) n-amylamine, (7) distributions (8) n-amylamine, (8) 1,2-propyleneglycol, (8) dipropyleneglycol, (9) different aliphatic alcohols and acids, (8) n-amylamine, (9) n-amylamine from the position and depth of the minimum on the C-E curves and the value of (eneglycol, (6) diethylketone, (7) triethylphosphate, (8) diethyl ether, (9) diethyleneglycol, (10) dimethyl-

tion, but also by different free adsorption energy as well as by different interaction between adsorbed dipoles. Such behavior is realized in the case of adsorption on mercury of various aromatic and heterocyclic compounds. A sharp change in orientation of organic molecules with changing electrode potential was recorded for the first time by one of the authors²⁴ for aromatic amines and some sulfur-containing compounds. Later similar effects were reported by many other investigators (see for example refs. 25-30). For a qualitative description of the behavior of such systems the three parallel capacitors model can be used4,11, which assumes the existence of two limiting (at $\theta=1$) dependences of the charge on potential, each of which corresponds to one of the possible orientations of organic dipoles. A quantitative correlation of this model with experimental data requires, however, very cumbersome calculations and has not yet

In. of: (1) $0.5~M~\omega$ -aminocaproic acid, (2) $0.1~M~\omega$ -aminoenanthic acid.

been achieved.

acteristic of organic substances adsorbed in two different positions. It should be some term of this sum should increase the positive value of effective μ . However, stressed that for illustration we have chosen here not aromatic or heterocyclic conjuith rising θ , the value of $-n\mu_{\perp}^{\text{(water)}}$ will either remain constant (if organic molecules pounds changing their orientation as the result of π -electronic interaction, but moleto not alter their orientation and, hence, n = const.), or will decrease (if orientation of cules of ω -amino acids forming in aqueous solutions zwitter-ions with a very larger molecules upon transition from $\theta \to 0$ to $\theta \to 1$ changes from horizontal to dipole moment, owing to which fact their orientation depends strongly on the elementical, so that at larger θ an organic molecule displaces fewer water dipoles). It is trode charge^{31,32}. On a positively charged surface these molecules are oriented with vident that in the former case μ = const. and the ratio μ/δ should drop sharply with the group $-COO^-$ towards the electrode, whereas at q < 0 it is the group $-NH_{tising} \theta$, which is at variance with experimental data. In the latter case, which appears which faces the electrode. Since, as regards their effect on the double layer capacitito be more realistic and also makes it possible to explain the Traube rule³⁵, the fulboth orientations of these molecules are practically equivalent, the maximum adsornal liment of condition (11) can be substantiated only if it is assumed that the main contion regions are characterized by minima of almost the same depth on the $(C-C_0)$ regibution to the total value of μ is made by organic dipoles oriented with their positive E plots, as is clear from Fig. 4. The maximum separating these minima lies approxends towards the electrode surface. mately at a=0 and corresponds to the reorientation of zwitter-ions. The cathod maximum and the anodic maximum are ordinary adsorption-desorption peak 0=1, the above reasoning leads us to the conclusion that the major part of the adbeyond which the solvent molecules displace organic molecules from the surfactorption potential E_N is due to the orientation of organic dipoles and to a lesser degree The last conclusion is confirmed by corresponding electrocapillary measuremento the displaced water dipoles, i.e. $|\chi_1^{q=0}| > |\chi_0^{q=0}|$. This conclusion is supported by the carried out in refs. 31 and 32. The measurements of the anodic maximum at morfact that the electron work function is practically independent of the water vapour positive potentials are impeded by the commencing oxidation of the amino group adsorption on mercury up to monolayer formation 36 *. Thus, the change in the orien-

the position of the electrocapillary curve maximum is the behavior of halogenate q_0 vs. E curve only insignificantly (see Fig. 2)**. It is this fact which makes it possible aliphatic acids. While for unhalogenated acids $E_N = +0.24 \text{ V}^{22}$, in 0.1 M β -chlore interpret qualitatively all the characteristic regularities of adsorption of organic propionic acid solution $E_{q=0} = -0.02$ V, and in 0.2 M β -iodopropionic acid solutio substances on electrodes on the basis of linear dependences of q_0 on E and q_1 on E $E_{a=0} = -0.32 \text{ V}^{24}$.

The orientation of adsorbed organic and water dipoles determines not on the limiting dependences of the charge on potential (at $\theta = 0$ and at $\theta = 1$), but also the electric double layer field 6.7 leads to the conclusion that those molecules which relationship between the process of displacement of solvent molecules by those adsorbate and the electrode charge or potential. In fact, as follows from refs. 22 and 3 for the quantitative substantiation of the two parallel capacitors model, i.e. of t equation

$$q = \overline{C}_0 E (1 - \theta) + C_1 (E - E_N) \theta$$

it is necessary to assume that the change of the dipole moment component norm to the surface (μ) with increasing θ is compensated for by the increase of the meaning thickness of the surface layer (δ), so that μ/δ = const. It should be kept in mind that the value of μ is an effective value in the sense that it accounts not only for the normal component of the dipole moment of an organic molecule, but also for the norm component of those n water dipoles which are displaced by this adsorbate molecular $1e^{6,7,34}$, i.e. $\mu = \mu_{\perp}^{(org)} - n \mu_{\perp}^{(water)}$.

The behavior of real systems deviates somewhat from the condition μ/δ const., but, as shown in ref. 22, in the case of various aliphatic compounds these device tions are rather small, so that to the first approximation we can assume

$$\left[\mu_{\perp}^{(\text{org})} - n \; \mu_{\perp}^{(\text{water})}\right] / \delta \approx \text{const.}$$

surface layer thickness δ always increases with increasing θ , therefore the validity relation (11) means that the positive value of the algebraic sum $\mu_1^{\text{(org)}} - n \, \mu_1^{\text{(water)}}$ als

ncreases with the coverage. At the point of zero charge, where water dipoles are pre-Figure 4 illustrates the existence of two maximum adsorption regions, charlenninantly oriented with their negative ends towards the mercury surface^{6,7}, the

Since $E_N = 4\pi\mu v_{\infty}/\varepsilon_1$, where v_{∞} is the number of organic dipoles per 1 cm² at Another example of the effect of the dipole moment of an organic substance otation of water dipoles under the action of the double layer field affects the shape of the (see ref. 2).

The importance attached to the role of the interaction of water dipoles with ave the largest dipole moment per unit surface should be preferentially adsorbed at a arge electrode charge. In accordance with this conclusion, it would be expected that dsorption of molecules of ω -aminocaproic and ω -aminoenanthic acids (whose ipole moment⁴³ in aqueous solutions is about 29 D) on a mercury electrode should crease with increasing electrode charge (both positive and negative). However, (Ufig. 4 shows that in accordance with the two or three parallel capacitors model, any ubstance whose adsorption decreases the capacity at low charges, at high charges is lisplaced from the surface by the solvent molecules regardless of the ratio between he dipole moments of organic substance and water.

Gileadi et al. 44,45 suggest that in the case of phenol adsorption on platinum nd hydrazine adsorption on gold, in the anodic potential range these substances Ompete with a completely oriented layer of water dipoles. As shown by calculation, he existence of such a layer of adsorbed water dipoles should cause a potential drop

Our conclusion concerning the value of $|\chi_0^{q=0}|$ contradicts that of Oel and Strehlow³⁷. In order to explain e supposed difference between the Lippmann and the Billiter potentials of zero charge, Oel and Strehlow ^{id} to assume that $|\chi_0^{q=0}|$ amounts to as much as 0.7 V. However, the whole Billiter potential concept (1) pparently has to be abandoned now 38,39.

It has also to be kept in mind that the adsorption isotherm of water vapour on mercury has an S-On account of the large size of organic molecules compared to those of water, this aped form 40.41, which points to an attractive interaction between water dipoles adsorbed on an unchargemercury surface, incompatible with their parallel orientation.

These conclusions agree with the model of the mercury/water interface presented in ref. 42.

197

of ~1.2 V. Since these dipoles are oriented with their negative ends towards the ends to the ends towards the ends to the trode surface, at a given distance from the point of zero charge this should lead, B. Damaskin, A. Frumkin and A. Chizhov, J. Electroanal. Chem., 28 (1970) 93. sharp increase of the positive electrode charge. In actual fact, however, in the and S. Trasatti, J. Electroanal. Chem., 28 (1970) 257. range on platinum metals, in the absence of pronounced specific anion adsorption A. N. Frumkin, Ergeb. Exakt. Naturwiss., 7 (1928) 235; Colloid Symp. Ann., 7 (1930) 89. a marked decrease of positive q is observed 46 . This phenomenon is explained by sorption of oxygen atoms which, together with surface metal atoms, form dip (1964) 1797. oriented with their positive ends towards the electrode. The appearance on the electrode and R. Parry and R. trode surface of O_{ads}, rather than that of oriented water dipoles, is the main reads H. FISCHER AND W. SEILER, Corros. Sci., 6 (1966) 159. of desorption of adsorbed molecules in the systems considered by Gileadi. The 19 L. K. Partridge, A. C. Tansley and A. S. Porter, *Electrochim. Acta*, 11 (1966) 517. of adsorbed hydrogen and oxygen atoms in adsorption of organic substances 18 B. Damaskin, S. L. Dyatkina and N. A. Borovaya, Elektrokhimiya, 6 (1970) 712. electrodes was discussed earlier⁵.

SUMMARY

The role of the orientation of adsorbed dipoles of water and organic substal 37 H. I. OEL AND H. STREHLOW, Z. Phys. Chem., N.F., 4 (1955) 89. at the electrode/solution interface is discussed. It is shown that the charge corresponds A. Frumkin, Z. Elektrochem., 59 (1955) 807, 819, 821. remain constant but varies within rather wide limits depending on the polarity organic dipoles with the double layer field in the adsorption of organic substances 42 B. Damaskin, Elektrokhimiya, 2 (1966) 828. electrodes.

The displacement of adsorbed organic molecules by water molecules at st cient large electrode charges is determined by the ratio of the capacities in the absel 45 U. EISNER AND E. GILEADI, J. Electroanal. Chem., 28 (1970) 81. of adsorbate and at complete coverage of the electrode surface with it, rather than 46 A. N. Frumkin and O. A. Petry, Electrochim. Acta, 15 (1970) 391. the ratio of the effective dipole moments of these molecules per unit surface.

REFERENCES

- 1 A. N. FRUMKIN, Z. Phys., 35 (1926) 792.
- 2 A. N. Frumkin and B. B. Damaskin in J. O'M. Bockris and B. E. Conway (Eds.), Modern Aspec Electrochemistry, Vol. 3, Butterworths, London, 1964, p. 149.
- 3 B. B. Damaskin, Usp. Khim., 34 (1965) 1764.
- 4 B. B. DAMASKIN, J. Electroanal. Chem., 21 (1969) 149.
- 5 B. B. DAMASKIN AND A. N. FRUMKIN in N. S. HUSH (Ed.), Reactions of Molecules on Electrode Wiley New York, 1971.
- 6 J. O'M. Bockris, M. A. Devanathan and K. Müller, Proc. Rov. Soc. London, A274 (1963)
- 7 J. O'M. BOCKRIS, E. GILEADI AND K. MÜLLER, Electrochim. Acta, 12 (1967) 1301.
- 8 N. F. MOTT AND R. J. WATTS-TOBIN, Electrochim. Acta, 4 (1961) 79.
- 9 J. R. MacDonald and C. A. Barlow, J. Chem. Phys., 36 (1962) 3062; 39 (1963) 412; 44 (1966)
- 10 S. LEVINE, G. M. BELL AND A. L. SMITH, J. Phys. Chem., 73 (1969) 3534.
- 11 B. B. DAMASKIN, *Elektrokhimiya*, 5 (1969) 771.
- 12 R. I. KAGANOVICH, V. M. GEROVICH AND T. G. OSOTOVA, Dokl. Akad. Nauk, 155 (1964) 893.
- 13 V. K. VENKATESAN, B. B. DAMASKIN AND N. V. NIKOLAEVA-FEDOROVICH, Zh. Fiz. Khim., 39 (1965)
- 14 R. LERKH AND B. B. DAMASKIN, Zh. Fiz. Khim., 39 (1965) 211.
- 15 R. I. KAGANOVICH AND V. M. GEROVICH, Elektrokhimiya, 2 (1966) 977.
- 16 B. B. Damaskin, A. A. Survila and L. E. Rybalka, Elektrokhimiya, 3 (1967) 146.
- 17 R. I. KAGANOVICH, B. B. DAMASKIN AND I. M. GANZHINA, Elektrokhimiya, 4 (1968) 867.
- 18 B. B. Damaskin, L. Kišova and R. V. Ivanova, Elektrokhimiya, 4 (1968) 1224.
- 19 B. B. DAMASKIN AND S. L. DYATKINA, Elektrokhimiya, 7 (1971) 260.
- 20 V. M. GEROVICH, B. B. DAMASKIN AND R. I. KAGANOVICH, in Adsorbtsiya i dvoinoi elektricheskii s elektrokhimii, Nauka, Moscow, 1971.

- B. E. CONWAY AND R. G. BARRADAS, Electrochim. Acta, 5 (1961) 319.
- 6 B. B. Damaskin, I. P. Mishutushkina, V. M. Gerovich and R. I. Kaganovich, Zh. Fiz. Khim., 38

- N. A. BOROVAYA AND B. B. DAMASKIN, Elektrokhimiya, 7 (1971) 571.
- 33 B. B. DAMASKIN, Elektrokhimiya, 6 (1970) 1135.
- 34 A. N. FRUMKIN, Z. Phys. Chem., 111 (1924) 190.
- 35 I. LANGMUIR, J. Amer. Chem. Soc., 39 (1917) 1848.
- 36 N. S. Mirolyubova, N. A. Shurmovskaya and R. Kh. Burshtein, *Elektrokhimiya*, 4 (1968) 844.

- ing to maximum adsorption on mercury of different aliphatic compounds does 39 R. S. Perkins and T. N. Andersen in J. O'M. Bockris and B. E. Conway (Eds.), Modern Aspects of Electrochemistry, Vol. 5, Plenum Press, New York, 1969, p. 248.
 - (1955) 9. B. BERING AND K. IOILEVA, Izv. Akad. Nauk SSSR, Ser. Khim., (1955) 9.
- adsorbate molecules. This proves the importance of the interaction of adsorbate molecules. This proves the importance of the interaction of adsorbate molecules. B. M. Tessem and M. D. Olson, J. Phys. Chem., 65 (1961) 1373.

 - 43 H. NEURATH AND K. BAILEY (Eds.), The Proteins. Chemistry, Biological Activity and Methods, Vol. 1, Parts A, B, Academic Press, New York, 1953.
 - 44 T. Bejerano, Ch. Forgacs and E. Gileadi, J. Electroanal. Chem., 27 (1970) 31.

J. Electroanal. Chem., 34 (1972)