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The Motion of Solid and Liquid Metallic Bodies
in Seclutions of Electrolytes. I

By A. Frumkin and B. Levich

1. Fleetro-capillary moticns of mercury

Christiansen?® was the first to give a detailed description
of the motions of drops of mercury under the influence of an electric
current. After a number of older qualitative observations he showed
that when an electric current passes through a drop of mercury in an
electrolyte solution the potential difference across the mercury-
solution interface changes, inducing changes in the boundary layer.
If the mercury in the solution initially carried a positive charge, the
interfacial tension increases at the point where the current enters
the drop (negative pole of the drop) and decreases at its point of egress
(positive pole). These changes in the interfacial tension cause the
mercury to move from the posilive to the negative pole along the
surface and in the opposite direction within the drop itself. The
moving mercury surface drags along the adjacent layers of the solu-
tion, as a result of which the drop as a whole effects a reaction move-
ment along the lines of current. This motion, named electrocapillary
motion by Christiansen, can be olserved, for example, in the devia-
tion frem the vertical of mercury drops falling in an electric field.
The velocily of the motion is very great, considerably exceeding that
of the ordinary electrokinetic motions. As the solution is diluted.
the velocity of the drop in the field, calculated for the same poten-
tial gradient, decreases. Besides the motion of the drop as a whole,
Christiansen described the changes in form which it undergoes.

—_———

"Christiansen, Ann. Phys. (4), 12, 1072 (1903).
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The curvature decreases at the positive pole and increases at the
negative pole, so that the drop advances with its obtuse end.

It follows from the theory of electrocapillarity that the motion
of the drop in the field should cease if its initial potential corresponds
to the maximum of the electrocapillary curve, i. e. to the point of
zero charge. This conclusion was confirmed by Frumkin? for
falling drops, and by Bodforss® and CGraxford*for drops
al rest on a glass surface.

The motions of mercury drops in an electric field were first inve-
stigated theoretically by Craxford, GattyandMac k a y*.
These authors came to the conclusion that the electropho-
retic force acting on a drop is equal to the product of the electric
field intensity by the charge of the inner sheet of the double layer,
the latter quantity being measured by the usual electrocapillary
methods. It is obvious, however, that the sum of the electric forces,
acting on a system of total charge equal to zero, cannot itself be dif-
ferent from zero, so that the conclusion in this form is incorrect.
These authors consider the motions of mercury drops at small poten-
tial gradients as a particular case, and the simplest one, of ordinary
electrophoresis. Besides observations on the motions of comparativ-
ely large drops, the literature also contains data on the electro-
kinetic behaviour of mercury droplets of colloidal dimensions (10 *cm)
in mercury sols in the presence of small concentrations of electro-
Iyte®. The observed velocities do not differ in order of magnitlude
from those common in electrokinetic motions.

N. Bach® investigated in the laboratory of A. Frumkin the
potential differences which arise when a shower of mercury droplets
falls in a column of electrolyte, i. e. an effect similar to the currents
caused by the fall of solid particles in liquids(Dorn effect),the theory of
which has been given by Smoluchowski’. However, the potential
differences induced by mercury droplets falling in a normal KNO,

rumkin, J. Russ. Chem. Soc., 49, 207 (1917).
odforss, Z Elektrochem., 29, 127 (1923).
raxford, Phil. Mag., 16, 268 (1933); Craxford, Gatty
and Mackay, Phil. Mag., 23, 1079 (1937).

®Nordlund, Koll. Z., 26, 121 (1920); Bull u. Sé11lner, ibid.,
60, 263 (1932).

® N. Bach, Acta Phys. Chim., 1, 27 (1934).

‘Smoluchowski in Graetz Handb. der Elektrizitit und
des Magnetismus, 2, 385 (1914).
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solution are aboul 10° times greater than the possible values for
solid particles; in a 10°® normal KNO, solution the ratio is approxi-
mately 10 : 1. Thus, the observed potential differences, especially
in well conducting solutions, cannot be interpreted as ordinary
electrokinetic effects. This phenomenon can be explained as a rever-
sal of the Christiansen effect. As the drop falls through the solution
the surface of the mercury carrying the charges of the double layer is
pushed back, thus diminishing the charge density of the double layer
on Lhe front part of the drop and increasing it at its rear. This leads
lo potential differences in the electrolyte between the ends of the
drop and, hence, induces currents.

Interest in electrocapillary movements increased in conneclion
with the problem of the so-called polarographic maxima on the cur-
rent—voltage curves for a mercury electrode, discovered and de-
scribed by Heyrovsky and co-workers.

It has been shown by Frumkin and Bruns® that the
high values of the current observed at these maxima are due to the
solution being stirred by the electrocapillary motions of the mer-
cury surface. We shall not dwell on the theory of polarographic
maxima al any length in the present paper, inasmuch as we hope
shortly lo discuss the problem in a separate publication. The electro-
capillary motions giving rise to these maxima were subsequently
extensively investigated for both the case of a mercury electrode
with constant surface area®, and for a dropping electrode, the latter,
in particular, by Antweiler and Stackelberg'.
Antweiler considers that the motions of the mercury surface are
electrokinetic, and that they attain considerable velocities due to
the absence of such large frictional drags, as at solid surfaces, and
to the mobility of the charges in the inner sheet of the double layer

S Frumkin and Bruns, Acta Phys. Chim., 1, 232 (1934); see also
:{ﬁ) l1thoff and Lingane, Polarography, New York, 1943, p. 113 and
oll.

*Bruns, Frumkin, Jofa, Vanjukova and Zolota-
revskaja, Acta Phys. Chim., 9, 359 (1938); Jofa and Frumkin,
C. R. Acad. Sci. URSS, 20, 213 (1938); Jofa, Losev and Tretjakov,
J. Phvs. Chem. (russ.), 19, 358 (1945).

v Seidell, Z angew. Chem., 48, 463 (1935); Stackelberg,
Antweiler u. Kieselbach, Z Elektrochem., 44, 663 (1938);
Antweiler, Z Elektrochem., 44, 719, 831, 888 (1938); Stackel-
berg, ibid., 45,490 (1939),
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caused by the high electrical conductivity of mercury. In contrast
to electrokinetic motions-at a solid surface, the double layer at the
mercury surface moves as a whole. Antweiler regards it as essential
for the phenomenon that the current pass through the solution —
metal interface. This latter circumstance is especially emphasized
in Stackelberg’s review. According to Stackelberg the motions de-
scribed by Christiansen are connected with the presence of dissolved
oxygen in the solution. If the oxygen is completely removed, Z. e.
in the case of an ideally polarizable droplet, the motions should cease.

Krjukova and Kabanaov? called attention to the
motions which arise in a solution near the surface of dropping mer-
cury caused by the process of dropping itself. They found that these
motions are observed particularly well at comparatively high
concentrations of the electrolyte (above 0.1 N).

The papers cited do not throw sufficient light on the questions
concerning the influence of the electrolyte on the motion of the mer-
cury surface, the hydrodynamical properties of this surface in con-
ducting solutions and the relations between electrocapillary and
electrokinetic motions. Whereas the majority of authors dealt with
these two groups of phenomena as having no bearing on one another
and this viewpoint is followed out in the principal monographs on
the subject, Craxford, Gatty and Mackay*, as has already been obser-
ved, do not distinguish between the electrocapillary motions and the
ordinary electrokinetic motions of solid particles. The dilficulties
here involved become even more evident in the theory of polaro-
graphic maxima. The aim of the present paper is to establish the
principal relationships governing these phenomena.

We shall limit ourselves at first to a consideration of the motions
of a mercury surface in the case when the latter is not an electrode,
i{. e. when the algebraic sum of all the charges appearing and dis-
appearing on the entire surface is zero. The motions on a mercury
electrode will be considered subsequently. In order to make the
problem clearer, we shall briefly review the physical fundamentals
of the theory of electrokinetic phenomena, limiting ourselves, how-
ever, o ils elementary part which we shall need for comparison with
the theory of electrocapillary phenomena. '

ukova and Kabanov, J. Phys. Chem. (Russ.) 13, 1454

U Krjuk
5 (1941).

i
1939 15, 47
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2. Electrokinetic motions of non-condueting particles

If a solid spherical particle of radius @ and surface charge ¢ in
a non-conducting liquid of viscosity pis subjected to the action of an
electric field of intensity E, its velocity U, in the case of «low»
(Stokes) motion, is equal to
eE 2:Fa
“bmpa . 3 (1)

where = is the surface densily of charge. In the case of a liquid
particle the expression for I/ will have a slightly different numerical
coefficient. Expression (1), however, is not valid for a particle in an
electrolyte solution. In this case, as is well known, the velocity
of the particle is

P 2)

- -’1?:|.|. :

where E is the electric field intensity al a greal distance from the
particle, D—the dielectric constant of the medium and {—a certain
elfective potential difference between the particle and the solution,
which is usually called the electrokinelic (zeta) potential. If instead
of £ we introduce the average thickness d of the double layer, de-
termined by the relation:

bred = D7, 3)
then equation (2) takes the form:
v="%, @)

where e, as formerly, is the surface densily of charge.

The theory of electrokinetic motions was developed by Helmholtz
and Smoluchows ki, In the derivation of equation (12) it is
assumed that the external field is addilively superimposed on the
field of the double layer, and that the thickness of the double layer
is small as compared with the dimensions of the particle. We shall
limit ourselves in what follows to Lhe case when the latler con-
dition obtains.

The velocity calculated by equation (3) is less in order of magni-
tude than that according to equation (1) by a factor of the order
of d/a.This is due to the circumstance that in electrolytic solutions the
surface of the particle no longer carries a free charge, but is surround-

Smoluchowski, loe. cit., pp. 366—428.
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)

ed by an electric double layer of positive and negative charges in
equal amounts. The force acting per unit area of each sheet is equal
in magnitude to eEy, where E,is the component of the field intensity
tangential to the particle surface. Bul the forces acting on the two
sheets are opposite in sign and since their points of application are
a very small distance d apart, the' viscous drag acquires a large
value, and the velocity of motion is small. Whereas for a particle
carrying free charges the frictional drag (per unit surface) is of the
order of pU/a, in electrokinetic motion its magnitude is of the order
of pU/d.

Smoluchowski drew attention to the essential correction which
must be introduced into the electrokinetic equations when the body
1s in a poorly conducting medium. In this case, the convection cur-
rent due to the relative motion of the outer sheet of the double layer
is superimposed on the ordinary current of bulk conductivity and
distorts the field. In the limiting case when the current of bulk con-
ductivity near the particle can be disregarded in comparison with
the surface convection current, the velocity of the particle is deter-
mined from the condition that the current of bulk conductivity at
a greal distance from the particle goes over into the surface current
at its boundary.

Under these conditions we have for a spherical particle (see below):

v==E (4)

Usually the surface conductivity was taken into account simply
as a correction to equation (2) or (3)'®. A consideration of surface
convection conductivity in the case of a spherical particle brings to
the following expression, derived by B. Levich (Part 1II to appear
shortly): )

sEd

ds* ° 5

l-"—]-—a; ( )
It d=*/axy. < 1 (usual case), equation (5) goes over into (3); if de?/axn > 1,
equation (5) goes over into (4). Since the velocity of the outer sheet

U=

of the double layer at a potential gradient equal to unity ise: —E ,

the quantity d=*/p expresses the specific surface conductivity, while
dz*/az. in order of magnitude represents the ratio of the convection
current on the surface of the particle to the bulk conductivity current
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in a conductor of cross section determined by the linear dimensions
of the particle.

The theory of surface conductivity was developed by a number
of authors, in particular, by Bikerman' and Herm an s,
Bikerman pointed out that, in addition to convective surface conduc-
tivity, it is necessary to take into account the surface electrical
conductivity connected with the presence of an excess of ions adsor-
bed on the particle surface. Thus, if ¢ =0 but the surface carries equal
amounts of adsorbed cations and anions, the surface electrical con-
ductivity will evidently be equal to

I'F (U, +U,),

where 1I' is the quantity adsorbed in equivalents per unit area, U
and U,—the mobililies of the cation and anion, respectively, in the
surface layer. In the case of motion near a solid wall this effect
should be of the same order of magnitude as the convection effect.

Indeed, the ratio % I'F (U,—U,) is of the order of C: -2 where
(1]

e, and ry are the charge and radius of the ion respectively, D—the

dielectric constant of the medium, and §: r%'\..i. One cannot, how-
1}

ever, agree to the validity of Bikerman’s method of computation,
in which the total surface electrical conductivity is taken simply as
equal to the sum of the convection and conduction terms. That
such an assumption is not permissible becomes clear as soon as one
considers the case of a surface layer containing practically ions of
only one sign, for example, cations. In this case, according to Biker-
man, the quantity of electricity transported by the charges in the
surface layer in a field of unit intensity should be equal (in our no-

[= <]

tation) to Se" (U.+V,), where ¢, and V, are, respectively, the
0

charge density and the velocity of the liquid at a distance z from

the wall. It is evident, however, that in reality, when the distances

between ions of like sign are on the average small compared with the

distances of the ions from the wall, the liquid medium should move

together with the ions as a whole and the quantity of electricity

¥ Bikerman, Z physik. Chem., (A), 163, 378 (1933); 171, 209 (1934};
Trans. Farad. Soc., 86, 154 (1940).
“Hermans, Phil. Mag., 26, 650 (1936).
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==}
transported should equal R e,V dz, or, for alinear distribution of
ﬁf

potential e*d/p. In the opposite case, when the distances between the
jons are large compared with the distances of the.ions from the

= =]
wall,the quantity of electricity transported sould beequal to g e, U dx

0
where U,, the mobility of the cution, is-slightly changed by the
neighbourhood of the wall. In the general case, the surface conduc-
tivity should lie between these two values, rather than be equal to
their sum, as Bikerman assumes. In the equations that figure in
the present paper only the convection term is taken into
account, inasmuch as our purpose is to draw a comparison with the
equations of electrocapillary motions. In the latter case, as will be
shown laler, the convective conductivity is larger than the conduc-
tion term by several orders of magnitude.

Hermans considers in his investigation the polarizalion of a
double layer by an applied electric field. His boundary condition for
the charge density is, however, incorrect. He puts the change in the
density of the particle surface charge equal to zero, whereas in reali-
ty, the boundary condition is that the normal component of the cur-
rent be zero. As regards the charge densily, computation shows that
its varialion by no means vanishes on the surface. The conclusions
of the paper discussed cannot, therefore, be accepled.

Among the other electrokinetic phenomena which we shall con-
«ider in the present paper, besides the motion ol a particle in an
electric] field, special interest is presented for us by the currents
caused by the motions of particles in a liquid, in particular, by the
fall of particles under the influence of gravity. In this case the motion
of the particle displaces one sheet of the double layer with respect
to the other, and the free charges of opposite sign which appear at
the ends of the particle are neutralized by a conduction current in
the bulk of the liquid. According to Smoluchowski, the potential
difference E per unit length of tube appearing on sedimentation of
suspended spherical particles, equals

dePr
E= o (6)
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(E being expressed in terms of &, and not of §, as done by Smoluchow-
ski), where P is the weight of a particle in the liquid and n—the
number of particles per unit volume. In the case of low bulk conduc-
tivity, equation (6) stands in need of acorrection, analogous Lo Smo-
luchowski’s correction for surface conductivity in the expression for
the currenls which arise when a liquid flows through a capillary.
Physically this means that the potential difference resulting from the
motion of the particles tends to make the outer sheet of the double
layer move in a direction opposite to that of the imposed motion;
in other words, the potential difference is counteracted by both bulk
and surface conductivity. In the limiting case the potential diffe-
rences can be determined from the condition that the electric field
induced by the fall of the particle completely hinders the relative
displacement of the outer sheet caused by the viscosity drag. In this
case, instead of (6) (see below) we have

Ji-a8tt (7)

The general expression for £ has the form:

dsPn‘_- ‘

E= (8)

d ,°
p.x.-}-:s

The transition to bolh limiting cases (6) and (7) is determined, as

in cataphoresis, by the value of the dimensionless quantity

% : :—x . The difference between the expressions (2) and (€), on the

one hand, and (4) and (7), on the olher, consists in that the former
imply that the potentiat aiiference is neutralized by bulk conducti-
vity, whereas in the derivation of the latter it is assumed that
near the particle surface this elfect is entirely due lo the migration
of the outer sheet of the double layer. If we consider the effects de-
scribed by the general equations (5) and (8) in their dependence on =
we come to the unexpected conclusion thatwith an increase in e,
the quantities U in (5) and (£ in (8) pass through a maximum ‘at

1 . .
& = (‘E"S’i)f and therealter decrease. Unfortunately, this conclusion

tannot be verified on the experimental material available.
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3. The system of forces acting on the surface
of a condueting particle

The influence of conductivity on electrokinetic phenomena was
investigated by Henry'. However, for a melallic particle, Z. e.
for a particle whose electrical conductivitly considerably exceeds
the conductivity of the solution, the cataphoretic velocity calculated
from his formulae becomes zero. As shown by both Henry and other
authors ' this is due to neglect of polarization phenomena in the
deduction. If the particle is sufficiently polarizable, so that the
lines of currenl cannot pass through it, its behaviour should evidently
approach that of a non-conducting body. In the available literalure,
however, we can find no quantitative discussion'? of the rdle of pola-
rization phenomena in the cataphoresis of metallic particles. In this
paragraph we shall consider the forces acting on a spherical metallic
particle in a solution of electrolytes under action of an electric field.
We shall assume at first that the particle is ideally polarizable, i. e.,
that the potential differences at the solution — metal interface prevent
both the discharge of ions of the solution and the formation of new
ions. Under these conditions the normal component of the current at
the surface of the particle, and, therefore, the normal component of
the field in the solution outside the double layer is zero, in other
words, the distribution of the lines of force outside the double layer
is the same as in the case of a non-conducting body. We also assume,
for the time being, that the double layer has a Helmholtz structure,
i.e., that the centres of gravity of the ions forming the outer sheet of
the double layer lie on the surface of a sphere of radius a4 d, concen-
tric with the surface of the particle. It is usually assumed that the
outer sheet of the Helmholtz double layer is rigidly bound with the
surface of the metal. One might consider, however, that the surface
of the metal is covered with a layer of adsorbed molecules, which plays
the part of the dielectric in the double layer, keeping the contra-ions
al a constanl distance from the surface of the metal in such a way
that they relain their mobility. Regardless of the soundness of such

» Henry, Proc. Roy Soc., (A), 133, 106 (1933).

¥ Verwey u Kruyt, Z physik. Chem., 167,137 (1933); Kruyt
u. Oosterman, Kolloidchem. Beih., 48, 377 (1938).

7 The paper of Overbeck, C. B. I, 2673 (1943), was unfortunately
ant available.
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an assumption, we shall here utilize the simple Helmholtz model of
the double layer to investigate the electrokinetic behaviour of metal-
lic particles, as providing the best illustration of the relations under
discussion. The distribution of the lines of force in the case of a posi-
tively charged particle conforming to our assumptions is shown in
Fig. 1. The Y axis has been laken parallel to the lines of force at a

, i £

Fig. 1. An «ideally polarizable» positively charged particle
in an electric field. The arrows show the direction of the
applied field and of the field of the double layer.

great distance from the particle. Denole by E the field intensity far
from the particle, by r—the distance to the centre of the sphere, by
fi—the angle between the radius vector and the y axis (0<0<m=).
The zero value of the potential in the solution is chosen at r=a-d
and 0 ==/2. Then at r=a--d

o=—E r+ 350 1 cost (9)
and at r=a-}-d
9= — 2 E(a+d)cos b (99)

Inside the metal and on its surface, i. e. at r<a
?=% (Qb)

Where @, is a constant. The solution of lhe Laplace equation
satisfying the boundary conditions (9a) and (9b) has the form
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?=%(“—J§£—i)%—:—j E(‘""’i)( £) (9

Equations (9), (9a), (9b) and (9¢) can serve to determine the
quantities characterizing the double layer, in particular, the for-
ces acting on it.

We introduce the following notations: Ao —potential jump be-
tween the metall and the solutionin the double layer; = — charge
per unit area of, the inner sheet ¢f the double layer, ¢’ —charge
per unit area of the outer sheel, E,—field intensity component
tangential to the surface of the double layer (E, is considered posi-
tive when it forms an acule angle wilh the y axis); E, — field
component normal to the surface at the boundaries of the double
layer, and E,,—lhe same when the normal is directed out of the
double layer. To compute the forces we choose a part of the
dcuble layer consisting of a surface element of the inner sheet,

dS, and a surface element of the outer sheet w dS included

in the same solid angle. We denote by F,dS the tangenlial force
on this element, and by F,dS—the normal force, the posiiive
direction of F; being taken the same as the positive direction
of E, and the posilive direction of F, being towards the centre
of the sphere (Fig. 2).

In determining the values of the above quantities we shall
assume that d € @, and shall limit ourselves in all the final
expressions to the first termn of the development of the power
series in d/a. In order to chtain these results, however, it is neces-
sary to determine the inlermediate wvalues of E, and = with an
accuracy up to terms of the next order.

From equations (9)— (9¢) it follows that

69=%+3—Ea cos . (10)

‘The density distribution of the lines of force in the double layer,
schematically depicted in Fig. 1, corresponding to the dependence
of Ag on 0, (for Ag > 0), visualizes the polarization of the double
layer under the influence of an external field.
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Further,

(Eny)r=a= —( )rea (d %)+-§Eacosﬁ (%_1_?;’), (11)
(Enl}r=a+d:<z—? ng= .
= —0, (g—%)_’;f;:;;so 2 (t1)

where the values of d¢/dr are determined from equation (9c).

(Ena)r-a = (Ena)r=u-1 d= 0, (11]3)
(E:)r=ﬂ:05 (12)
and
1 : 3 . :
(Et)r=a+a= 2 (55),apa= 3 Esin®, (12a)

85— {(Enl)r—a + ( ﬂt)"=“} 5=

& (G )+ oo (342}

(‘ﬁ-r-lf) “I_!,_{(Enl)r n*d‘l‘(En Yr=a+d) (a-}-d) =
(13a)
= 4...{ (d —>+ ans(.'( —|— }:—e, '

where k is the dieleciric constant of the medium in the double
laver.

From equations (11), (12) and (13) it is easy to determine the
quantities F, and F,. Retaining in thLe final expression only the
first ¢f the development in power series, we oblain:

(13)

Ft = (E:)r—--a et (El)r=a+d e’ (a ‘: a

and hence

) = —(Edr-atae,  (14)

o

Fy= - r{—dj‘?o ¥ *Ea{‘f:sﬂ } %Esinﬂ—.—
1 4l
T CeR=F

s (14a)

l|

Where C=£:f—d is the capacily of the double layer per unit area

‘nder the condition d < a, and Aa=§ (Ag)*. It is well known



782 : A. Frumkin and B. Levich

that in the case of a Helmholtz double layer the quanlity Ac
expresses Lhe lowering of the interfacial tension due to the sur-
face charges. The direction of the force F, is shown in Fig. 2.

Fig. 2. The motion of a positively charged particle in an
electric field. The small arrows denote the direction of
motion of the liquid, the thick arrows—the direction of the
forces, the large arrow in the lower part of the figure—
the direction of motion of the particle as a whole, Fy is the
electrical component of the normal force,

For the normal componenl

1
Fa= — ] Bndrma—(Bndema } o+

a

+%{ (En)r=a+d— (En;)r-_--u—}-; } <a+d)2 e =

__ClAg) 2

- a a

(15)

It is evident from (15) that the alsolute value of F, is larger
on the right-hand side of the sphere than on the left-hand side.
The direction and relative values of F, for 6=0 and 6 == are
shown in Fig. 2.

From equations (14) and (15) we find the resulting forces
which act on the particle as a whole. The force F, has a compo-
nent parallel to the y axis equal to F,sin 0; the tangential com-
ponent acting on the porticn of the double layer belween the
angles 6 and 0--d6 is, therefore, equal to
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2za*sin 6d0 F,sin 6 = 2ra sin® 0 gﬁ\g di =

= —3xa*EC sin® 0 (g, 45 Eacos ) do.

For the force on the whole surface we oblain:

ki

e S 3ra*E sin® 0C (cpo -{——g— Eacos 6 ) db = — 4ra’Co E =
b
= —bra’e E = —¢ E, (16)

where e,= Cq, is the charge densily on the surface of the metal
in the absence of an external field, and e, =4ra’s, is lhe total
charge of the surface. Thus the forces operative on the doubie
layer tangenl lo the surface of the metal have a component parallel
to the field inlensily, equal in magnitude to the force acting
on a particle with a free charge e, bul oppcsite in sign, inas-
much as lhey originate from the charges of the outer sheet of the
double layer.
The componen! of the force F, parallel to the y axis equals
F,cos 6. Inlegrating over the surface of lhe particle we oblain:
kg T
— S 2ra®sin OF, cos 6d9 = 4ra S Ac sin fcos 0d6 =
0 0
=4ra*Co,E =e¢,E. (17)
Thus, the sum of the tangential and normal forces acling
on the doulle layer is zero, as was lo Le expected. Ano'her resull
obtains, however, if one does nol consider lhe entire surface
of the particle, but only a parl of it, e. g. a spherical segmen!
determined by the angles 6 and =— 0 (Fig. 1). The sum of the
forces parallel lo the y axis is evidently equal to:
=0
pI S (F,sin®0— F, sin 6 cos 6) d6 =

[

“ .

= 2ra S (sin*& (%f+2;\c sin 0 cos ﬁ) di=
]

—2ra [do sin®0 [} =-> ¢,E cos 0 sin%. (18)

This expression vanishes at 6 =0, as follows from the prece-
ding; its magnitude passes through a maximum equal to e,E/)/ 3
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al cos®f=1/,. A par! of 'he particle surface consisling of lwo
spherical layers, one sullended 1y the angles O and 6, and the
other !y #— 0 and = is acted upon by a force equal in magni-
tude and opposile in sign lo the alove value; under 'he influence
of these forces slresses should arise in a solid metallic parlicle
which are absent in the case of a non-conducling particle. In a
liquid metallic particle these same forces, whose points of appli-
cation are separated ly distances of the order of lle parlicle
radius, must give rise 'o molions far more inlense than T'he
usual electrokinetic molions. The above derivation, which is based
on a consideration of the eleclric forces operating on the charges in
the simplest model of a double layer, is somewhat involved and not
sulficiently general. The same results could be obtained in the ge-
neral case much more rapidly by introducing the concept of inter-
facial tension from the very beginning. However, inasmuch as this
concept does not figure in the usual theory of electrokinetic mo-
tions, we should thus be introducing a difference in the treatment
of electrokinetic and electrocapillary motions.

The preceding derivation shows that this difference is of no fun-
damental importance and that the results here obtained also follow
necessarily from the application of the method which in the case of
a non-conducting particle brings to the usual theory of electrokinetic
motions. We shall now show how the equations deduced follow from
the concept of an interfacial tension between the metal and the
solution.

Let us assume that the gradient of the electric field at the metal
surface outside the double layer is small compared with its value in
the layer normal to the surface, so that the concepts of potential and
field intensity near the particle surface but outside the double layer
have a deflinite meaning. Assume also that the radius of the particle
is sufficiently large, so that the interfacial tension is independent
of it. Under these conditions the state of the surface layer and, hence
the metal —solution interfacial tension ¢ at each point of the metal
surface is uniquely determined by the potential difference belween
the metal and the solution A¢= o —aq, where ¢, is the value of
the potential in the solution at the me'al surface lut outside the
doulle layer. Or, inasmuch as ¢,=cons!, ¢ is delermined by 'he
quan'ily ¢, and is independent of tle poleniial difference at the
neighl ouring poin's. If Ao were cons'ant, ' would also Le con-
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slant, and no langenlial forces would arise on the surface of the
metal. In the case of a polarized particle Ag, and, hence, ¢ vary
from point to point. The tangential force acting on the surface is
oiven in magnitude and direction by gradc-dS; and, since o de-
f’ends only on 6 and F, is considered positive if the tangential
force is directed towards the decreasing values of 6, we have

1 ds

From equation (1@) and the Lippman— Helmholtz equation

L
dhy T T
it, follows that
- 105 1 ds  do, s ey
By =iy W ahy T ey (0

Equation (20) is a generalization of (14) and since ¢ =g, — Ag,
where o, is the value of the interfacial tension at the maximum
of the electrocapillary curve and de= —dAg, equation (19) is a
generalization of (14a).

The force F,, normal to the surface, according to the Laplace
formula of capillary pressure, is equal to

B e (3, @1)

a a a

Equation (21) differs from (15) by the constant term 2s,/a
which could not appear in the latter, since only forces of elec-
trical origin were considered in its derivation, their direction
being given in Fig. 2. Return once more to a consideration of
the forces acting on a part of the surface between the angles
% and 64 d6. The resultant of all the surface tensions acting
on this element is evidently directed along the y axis and equals

— ;ﬁ (2ras sin®b) db =
= — 2ma sin*0 j—gdﬂ—2wazsinﬂ><cosﬁx2%dﬁ=
= F,sin 6dS — F, cos 0dS. (22)

Act . ¢
 Physicochimica U.R.S.S. Vol. XX. No. 6. 2
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The first term in expression (22) gives the projection of the
tangential forces, the second term—the projection of the nor-
mal forces on the y axis. In integrating over the entire surface
of the sphere the quantity F,, sin 6 does not change in sign;
lut the quantity F,cosf has opposile signs in the lwo hemi-
spheres separated by the plane 0O’ (Fig. 2). However, inasmuch
as the value of the surface tension (at > 0) in the left hemi-
sphere is greater than in the right one the resultant of all the
normal forces is posilive and exactly cancels oul the resultant
of all the tangential forces, for, according to equation (22),

. ®
\ #, cos 1aS = \ Fsin 5.
L

In the absence of afield, i. e. when o ==const, each of these inte-
grals vanishes,and all the forces reduce to a uniform compressionls,/a.

The deduction based on the thermodynamic Lippman — Helmholtz
equation has the advantage of generality. An essential shortcoming
of the procedure, however, consists in that it yields only the resul-
tant tangential force, which is insufficient, for example, when we
wish to consider the electrokinetic motions of a solid particle.

Let us now find the force (F,), acting at a distance = from the
metal — solution interface in the case of a Gouy diffuse double layer.
We shall limit ourselves to the case of a plane interface z=0 (i. ¢. a
sufficiently large particle, whose curvature may be neglected), inas-
much as the transition from a plane to a spherical particle introduces
nothing new with respect to the Helmholtz layer discussed above.
In the case of a plane interface the field intensity in the electrolyte
outside the double layer can be considered constant. Denote by E,,
as above, the field intensity parallel to the metal surface at a distance
which is great compared to the thickness of the double layer. Let the
positive direction of the z axis be directed into the solution perpen-
dicular to the metal surface, and let @=0 at y=0 and sufficiently
large z. Then, outside the double layer ® =—F,y. Upon application
of an external electric field, equilibrium in the double layer is de-
stroyed and a current flows through it. On the surface of an ideally
polarizable particle, however, the normal component of the current
is zero. The equation of continuity for the current is of the form:

Olf T _]_ "'J}'y (23)
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and inasmuch as all the gradients parallel to the wall are small
compared to the perpendicular ones,
2

Ix _ C _
72 =0 or j,=const=0.

Hence, for a sufficiently large particle whose curvature can be
neglected, one may assume that the equilibrium is undisturbed
and write the differential equation of the diffuse layer (for a
uni-univalent electrolyte) in the form

(g+E, ) F (¢+E ) F

ek i -—Fc{ e RT ., R'I‘_'} ) (24)
4w dat

where ¢ is the concentration of the solution.

As in equation (23), we have neglected the differential coef-
ficients perpendicular to the wall. The component of the electric
force parallel to the metal surface, acting on a volume elemen t
of the diffuse part of the double layer lying between y and y - dy
with the hase 1 cm?, is equal to (By);epdz, where (E)), is the
tangential component of the field and ¢, the charge density at a
distance z from the interface:

R _ 8\ ke
(Et)x gy dr = (BTJ 5w bt dzx.
In addition, there is an osmotic pressure gradient in the polar-
ized diffuse double layer, since the ion concentration varies

from point to point; this gives a ponderomotive force equal
to -—(%‘dx, where p, is the osmotic pressure at a distance z
from the interface. The resultant ponderomotive force (F)),dz
is thus equal to

— ;C L“? f..":(P (}p‘l,
(F) dr = oy oz de — N dz. (25)
Denote by (c,), and (c,), the concentrations of cations and
anions, respectively, at a distance z from the interface.
Then
_(g+EMmF (e+E D F

Piui== {(cc)x'i'(ca)x} RT =c¢RT (e " RT +e¢ RT

Integrating equation (24) between the limits z and co we obtain

o _GHBMF  eiEwr
w (i) =are{e ™ mm powr o _al_p o, 6)

2%
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Equations (25), (24) and (26) yield:
_(‘P‘E‘E;!ﬂ F (p+E ) F
(Fgam—cF{e T o BT p(50) 4

(¢+Em) F (s+EF

+cF{e‘T'_eT} (33+E,>=Elex. (27)

Thus, taking into account the osmotic pressure gradient, one
not only obtains the same resultant ponderomotive force in the
double layer of a metallic particle as in the case of a non-con-
ducting particle, but also finds the same dependence on the
distance z, as determined by the dependence of e, on .

The difference between the two cases, just as in the case of
a Helmholtz layer, resolves to the following: the force acting on
the inner sheet of the double layer on the metal surface is
equal to zero or, to be more exact, its point of application 1is
displaced a distance of the order of the particle radius. Whether

18 In an unpolarized diffuse double layer the excess lateral pressure
on an element of the surface layer of thickness dwz, the integral of which
over the entire surface layer gives the magnitude of the surface tension
lowering, equals the extra osmotic pressure of the ions of the double layer

# 2
( px—Poo) dz plus the Maxwell pressure 8_!:1 %) dz, both these terms being
equal. However, were we to obfain the force (Fy), dz from the relation

d k odeN\*
(Fp)y dz= '_J; &r (E)ﬁ) +(Px'_Pcn} } dz, (a)

we should arrive at an erroncous result. This is due to the circumstance
that the electrical part of the ponderomotive force in the double layer,
expressed in terms of the components of the Maxwell stress tensor, should
contain, besides the terms Tg the terms 7% which are absent in an un-
polarized double layer. In this case, neglecting the term containing (d¢foy)?
in the expression for 7%, we obtain the following correct expression for
the electrical part of the ponderomotive force:

Ty oT% P k /0p\? o [k dp o
y v ] - _i? Aol (_? —? =
Erir d”'*dy{ 8 (dx) }d“ax smawayf

N o
T 4w dat oy

dz.

The quantity 7§ vanishes at both boundaries of the double layer. This
explains why integration of the inexact relation (a) leads to a correct
result.
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or not, equation (27) can be applied to a double layer of arbi-

trary structure, when specific adsorption forces are operative,

remains as yet unclear, and we are limited in the most general

case to the method of approach outlined above, which is based on

the thermodynamic Lippman—Helmholtz equation. The terms

k¢ 9% g2 and 2% dr in equation (25) are comparable in

4w oz oY 9y

magnitude. Indeed,

k|op d¢] k(O ¢

k d% o¢ | 9y d¢ | _S (d? g

S?ir' oz’ dydx_ m| dz dy dy o= — dy dz,
0

[}

dx  Jy

C'_

and, according to equations (24) and (26),

e

where =, as formerly, is the charge of the inner sheet of the
double layer. The ratio of the electrical and osmotic components
of the ponderomotive force equals

k 9% lo Ipy o d%
wany —o= ()5 +h)-

At comparatively large distances from the particle this ratio
becomes infinite and the ponderomotive force is determined
solely by the electrical component. At sufficiently small distances
on the contrary, it is equal to zero, and the ponderomotive
effect depends entirely on the osmotic term.

It remains now to discard the assumption that the metal —
solution interface is impenetrable to the ions, and to consider
the case of a partially polarizable spherical particle. We shall
retain the assumption, however, that the distortion of the double
layer induced by the current is so small that, in computing
the forces from the potential distribution, we may consider he
double layer as being in equilibrium, corresponding to the given
potential difference. In addition we shall assume that the change
in the potential difference A¢ induced by the flow of current
through the metal —solution interface is small compared with the
quantity RT/F. Then, instead of the boundary condition for an
ideally polarizable particle (99/0r);—a=0, where a is the radius

(=]

= — Sdp*d.’lii 1 El-e,

8l

-P"Ik,
Q
ﬁ'tﬂ
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of the particle plus its surrounding double layer (i. e. instead of
the former quantity a-+d) we have:

ora=jw=x(5%),_ " @8

taking into consideration, as before, that o, , vanishes at (=m=/2,
Here j is the current density normal to the surface of the sphere,
directed from the solution to the metal, and w is a constant
depending on the nature of the polarization process. If the pola-
rization is purely concentralional, then for the case of discharge

nFjg
of the cation and j,— the density of the limiting diffusion cur-
rent. For chemical polarization w = RT[nFj,, where n is a con-
stant of the order f unity which depends on the mechanism of
the reaction, and j, is the «exchange current» between the metal
and the solution, which determines the rate of exchange between
the two phases in the absence of polarization. In any case the
quantity w characterizes the polarizability cf the electrode, and
if it is very large, condition (28) practically coincides with the
condition (d¢/dr),.a=0 given above.

The solulion of Laplace’s equation under the boundary con-
dition (28), when the field intensity E at large distances from
the drop is parallel 10 the y-axis, has the form (for r > a):

and formation of a cation, w= » Wwhere n, is the valency

w—a ad
o= —FE cosﬂ(r—i— s ‘_.-_.) < (29)
and for r=a:
o= — -'z—Ea cos 0 _-_1}_ . (29a)
T

A comparison of equations (29a) and (9a) shows thal the pon-
deromotive forces are 1:(-14—%9) times less than for an

ideally polarizable drop. The solution (29) is correct only if the
quantity w does not itself depend on 6. In the case of concen-
tration polarization, assuming that the stirring depends on the
motions of the drops themselves, the quantity j, and therefore,
w, depends on 0§ in a complicated manner, and an exact solu-
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tion of the problem becomes impossible. In Section 4 we shall
return to several peculiarities of this case.
We proceed to estimate the limiting value of the coefficient

k=1+ 2—:w , which determines the decrease in the electrocapil-

lary effects due to incomplete polarizability of the drop. The
maximum value of k corresponds to minimum w. Inasmuch as
concentration polarization unfailingly accompanies every eleclro-
chemical process, minimum w should be observed in the pre-
sence of concentration polarization alone and in solutions which
do not contain foreign electrolytes not participating in the
reaction. In this cese the concentration polarization is equal to
the product of the ohmic potential drop in the Nernst diffu-
sion layer'® into the ratio of lhe valencies ¢f anion and cation
ng/n, and, therefore, with small values of this polarization:

¢ =2 e

% Nt
where & is the thickness of the Nernst diffusion layer, and
a a

= )
g & 0

n,

In regimes of stirring, that may be encountered when observ-
ing mercury drops, 8 lies between 10 and 10°* and k& cannot
exceed a few hundred. Thus, even under comparatively favour-
able conditions of polarization, the forces acting on a metallic
particle are quite considerable. Pelow we give a somewhat more
precise computation of k.

In deducing the relations of Section 3 we assumed that the
distribution of the lines of current near the particle is not
disturbed by its surface conductivity; i. e., that the surface con-
ductivity is small compared with the conductivity of a volume
of the solution of linear dimensions corresponding to the dimen-
sions of the particle. In the case of a solid particle this con-
dition will le fulfilled if ecFa < 1; since for not too small
values of Ag we have =~ 107 coul/em?, it follows, hence, that for a

#B. Levich and A. Frumkin, J. Phys. Chem. (Russ.), 15,
748 (1941); Acta Phys. Chim., 18, 335 (1943).
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107*N solution a=10"*, while for a 10°N solution a>10"'. Thus,
only in the case of sufficiently large particles is it permissible to
neglect the correction for surface conductivity in dilute solutions. In
the case of liquid particles it will be shown below that owing to the
appearance of a large convection conduclivity, this correction is of
even greater importance,

4. The movement of metallic particles in an electrie field

With a knowledge of the distribution of the forces acting on the
surface of ametallic particle we can proceed to consider the problem
of its motion in a solution under the influence of an impressed elec-
tric field. We shall not go into the strict hydrodynamical theory
here, which was developed by B. Levich, leaving that to another
paper (Part I1I), but shall limit ourselves to semi-quantitative di-
mensional estimates. As will appear from what/follows, such estimates
not only permil us to explain} the physical nature of the motion
but bring to relations which differ from the strict quantitative ones
only by unessential numerical coefficients.

Let us begin with the simpler case of the motion of a solid metal-
lic particle. As appeared in the preceding section, a correct evalua-
tion of the polarizability of the double layer on the surface of a metal-
lic particle brings to expression (14) or (26) for the ponderomotive
force; this does not differ from the corresponding expression for the
force on the double layer of a non-conducting particle. In the case
of a metallic particle the point of application of the force acting on
the inner sheet of the double layer is displaced a distance of the
order of magnitude of the particle radius. As a result elastic strains
are induced in the solid metallic particle which compensate the
difference of the corresponding electrical stresses acting on the sur-
face. However, the deformations thus brought about in solid particles
whose linear dimensions in various directions differ butslightly®’,
have no influence on the motion of the particle as a whole. The
motion of a solid metallic particle in an electric field is, therefore,
ordinary cataphoretic motion and may be described by the same
relations as for a dielectric particle.

2 In the case of a thin metallic foil when the polarization conditions are
suitably chosen, these strains can give rise to observable changes in form: this
can be utilized to investigate clectrocapillary phenomena on solid metals.
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The case is quite different with liquid metal particles, e. g. mer-
cury droplets in an electric field in a solution, The electric forces
acting on the surface of a liquid particle cannot, of course, be compen-
sated by mechanical strains and will, therefore, induce motion of the
liquid inside the particle. The viscous strains arising as a result of
cuch motion will play the part of the mechanical strains in a solid
particle in compensating the electric forces.

Since adjacent layers in viscous fluids are completely carried
along, the motion of the liquid inside the particle will be transmitted
to the surrounding solution. As a result the particle will begin to
move as a whole relatively to the distant layers of the external
liquid. It was this motion of liquid metallic particles, which
Christiansen investigated.

From the viewpoint of the theory here exposed there is no funda-
mental difference between the electrocapillary motion of liquid
metallic particles and the cataphorelic motion of solid metallic par-
ticles. In both cases the motion is induced by the same system of
electric forces, the essential difference between the two types of
motion lying merely in the different realization of these forces.

1t should also be observed that the motion of the external liquid
is composed, in general, of two!motions: one due to the pull of the
inner liquid, the other—to the cataphoretic motion of the mobile
(not fixed to the mercury) sheet of the double layer. The latter com-
ponent does not differ from ordinary cataphoresis, and inasmuch as
its velocity is small compared with the velocities of electrocapillary
motion, we shall neglect it in the sequel.

We now turn to a more detailed consideration of the electrocapil-
lary motion of a mercury drop placed in an electric field (Fig. 2).

For the sake of definileness, we shall consider, as above, that
the drop carries a positive charge. To each square centimetre of ils
surface are applied a tangential force F, and a normal force F, (see
equations (20) and (21)), which induce motion of the liquid inside
the drop. It is clear from expressions (20) and (21) and Fig. 2 that the
general picture of the motion is as follows. Under the influence of
the force #, which is directed towards increasing 6 the surface layer of
the liquid will move along the drop from right to left. Besides the
tangential forces, electrical normal forces represented in Fig. 2, dimi-
nishing the capillary pressure, are also operative. The latler is, the-
refore, larger in the left-hand half of the drop, at values of 6 close to=.
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This difference in capillary pressures causes a motion of the li-
quid in the drop from left to right. As a result a system of eddy cur-
rents arises inside the drop, as depicted by the arrows in Fig. 2,
Inasmuch as the layers of mercury moving along the surface of the
drop will drag along the adjacent layers of solution, the external
liquid will also be brought into motion as depicted by the arrows in
Fig. 2, while the drop itself as a whole will obviously recoil from left
Lo right along the applied field E.

A qualitatively similar theory was set forth in the work of
Christiansen; however, up to the present, no attempts were made to
study the phenomenon quantitatively, while even the qualitative
conceplions developed by Christiansen contain some inaccuracies.

The velocity of electrocapillary motion can be estimated in order
of magnitude by means of semi-quantitative dimensional considera-
lions. To carry out such an estimate it is necessary to bear in mind
that the motion of the mercury surface is accompanied by a transfer
of ions in the outer sheet of the double layer. The electric current of
convection thus arising tends to equalize the potential along the
surface of the drop. There are thus two essentially different limiting
regimes of flow: one, in which the convection current is so small
that equalization of the potential can be neglected, and another, in
which the convection current is so large that the potential along the
drop is almost completely equalized.

It may be assumed that in the first regime the potential jump
across the metal—solution interface depends on the angle according to
equation (10), so that on each square centimetre of surface a tangen-
tial and a normal force given by formulae (20) and (21) are operative.
These forces should be compensated by the viscous drag in the moving
liquid.

If o and p’ are the respective viscosities of the external (solution)
and internal (mercury) liquids, U —the characteristic velocily of the
liquid and a—the radius of the drop, then the viscous drag in the’
external and internal liquids will be, respectively, in order of magni-

o - : ‘ _
tude Ea— and*-t—g-. Hence, we can write approximately:

U ‘o
L AR

@ @

~zF.

The characteristic velocity of the liquid can be identified in order
«of magnitude with that of the recoil movement of the drop as a whole
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relative to the solution. Thus, in the case of the first regime of flow
the velocity of electrocapillary motion of the drop is of the order of
magnitude of
cEa

U~ 22 (30)
We see that the velocity U is proportional to the surface charge
density on the drop and inversely proportional to the viscosities of
the solution and the mercury.

In particular, if p’ tends to infinity, which corresponds to the
transition to a solid particle, the velocity of the electrocapillary
motion becomes zero. In reality, however, it goes over into the velo-
city of ordinary cataphoretic motion, which,as was pointed out ahove,
was neglected from the very beginning.

According to equations (2a) and (30) in order of magnitude velo-
cities of the electrocapillary and cataphoretic motions should be
in the ratio of a : d, i. e. the velocity of motion of a mercury drop
of the usual dimensions (of the order of 107'—107* ¢m) should be
approximately one hundred thousand times as large as the velocity
of asolid metallic particle.

Let us now consider the second regime of flow, when the change
along the surface of the drop of the polenlial jump across the inter-
face is brought to zero by the convection current of ions. In this case
the potential of the solution near the drop is constant at all points
and can be represented by the same expression as for an unpolari-
zable melallic particle:

=0, (a—:—s) E cosb.
The density of the current flowing onto the drop being thereby

= (g)hu = — 3x2FE cosf.

In order that the polential jump at the drop—solution interface
femain conslant, it is necessary that the convection current of the
lons of the outer sheet carried along the surface of the drop by the
liquid pe equal to this electric current. The convection current of the
charges of the inner sheet is short-circuited by the conduction current
ﬂ_OWing inside the mercury drop. Inasmuch as the electrical conduc-
Wvity of the mercury is large compared with that of the solution,
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the potential difference which thereby sets in can be discarded. A
schematic representation of the lines of current for such a regime of

motion is given in Fig. 3.

Fig. 3. Distribution of the lines of current taking into
acecount the convective conductivity for an «ideally polariz-
ables drop of mercury. The single arrows denote the lines
of condpction current in the solution and in the metal; the
double arrows—the lines of convection eprrent in the double
layer. The convection current is of opposite direction in
the outer and inner sheets since both sheets are moving
in the same direction but carry charges of opposite sign.

If we denote by V; the tangential velocity of flow at the
interface, then the convection current entering a spherical
layer between 6 and 6-4df will evidently be equal to
e2zaV,sin 6, the current emerging from the layer will be
e2ra [sin 6V]; o as and the difference between the two:

e2ra 2 (V7 sin b) do.

Equating this quantity to the electric current j,2ra sin 6d0
flowing onto the ring between 6 and 0--df, we find the follow-
ing expression for the velocity of flow of the liquid along
the surface of the drop in the second regime:

3 zEasinl

Vom—g —F%—

The velocity of motion of the drop as a whole will, there-
fore, be in order of magnitude

xEa
=1 (31)
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e

We see that in the second regime of flow the wvelocity of
the particle is inversely and not directly proportional to its
gurface charge density and, moreover, directly proportional to
the electrical conductivity of the medium. A comparison of
equations (31) and (4) shows that the second regime of flow -
exactly corresponds to the case (not realized with solid particles
under usual conditions) when the bulk conductivity of; the
solution near the particle is negligible compared with the
surface conductivity. In the general case we can obtain an
approximate expression for U on the basis of the following con-
sideration. The quantity of electricity, which is transferred in
unit time from the right-hand half of the particle to the left-
hand half owing to the motion of the surface, is equal in order
of magnitude to —Vzpea. The circuit of this convection current
is closed by the conduction current in the solution. Since the
electrolyte surrounding the drop presents a resistance of the
order of 1/za to the current flowing from one end of the drop
to the other, the potential fall due to this conduction current
in the solution adjacent to the drop will Ie equal in order of
magnitude to— Vg ea/xa ~—Us/x It is of opposite sign to the
potential fall near the drop due to the external field E, which
in order of magnitude is equal to Ea (self-retarding effect).
Hence instead of equation (30) we ohtain

¢ (Ba-2" (31a)
Ua——_FEL,

B+
therefore

v~—2 .
e

The exact, expression for the wvelocity of the drop in the
general case, derived from the strict hydrodynamical theory
(Part 111y is

L (32)
2p 4 3p +

xl“?e‘
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Formula (32) shows that realization of the first or second
regime of motion depends on the value of the dimensionlegg
2p 4 3p’

g%fx

With 2“;;3'* > 1, i.e. with a large viscosity and conduc-

.

quantity

tivity and small surface charge, the first regime of motion is
realized, and the velocity of the drop equals

__ tEa .

TR

In the contrary case —"IL!,B'*—‘<1 e. with small visco-

sity and conductivity and large charge, the second regime sets
in and the velocity of the drop equals

s :inz

It 1s convenient to introduce the mobility of the particle Z
L. e. the ratio of the velocity U to the intensity of the external
electric field £

L=o.

Z=p=—"" . (32a)
2p-+ 3p’ —f—— .

and the specific mobility of the surface z, 7. e. the value of
the mokbility at unit radius:
z= -_s_ . (32b)
43+ —

Formulae (32a) and (32b) reveal particularly clearly the dual
lole of the surface charge; on the one hand, it is the source of
the motion of the drop; on the other hand the cause of its

self-retardation, an increase in the charge bringing about a
damping of the motion,
At a charge densily e=ep,y

Emax = ]_./x (2p + 3p"),

the mobility attains a maximum value equal to

1 %
(Z)m;ix:E‘ l/m »
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The quantity 3ER is the maximum potential difference
existing letween two points on the particle surface in the
absence of motion. Let us denote this difference by AD,. Equa-
tion (32) may then be written in the following form:

U=y —EN =2 7,000,). (33)
2p 4 3#"!"‘_/_‘

) =

It is interesting to observe that expression (32) for the velocity
of a metallic drop is very similar in form to the corresponding expres-
sion (5) for a solid (metallic or dielectric) particle. If one ignores the
difference in the numerical coefficients of p, equation (32) can be
obtained from (5) by substituting a for d in the coefficient before the
quantities = and 2*/x.

This result may be interpreted in the following manner. In the
case of a solid particle the viscous motion of the liquid due to the
field should decay within the limits of the double layer, Z. e. at dis-
tances of the order of d, whereas with a liquid metallic particle it
should decay inside the particle itself, . e. at distances of the order of
the particle radius a. Hence in the latter case the viscous drag is less,
and the corresponding velocity greater than in the former case in
the ratio a/d. On passing over from a solid to a liquid particle the con-
vective conductivity of the surface and, therefore, the retardation of
the motion due to the electric field of the charges transported by the
convection current on the particle surface also increase in the same
ratio.

Let us consider now separately the mobility of mercury particles
moving in a very viscous medium, and let the first regime of flow
be in force. Then the following inequalities are satisfied:

ix_-<<p-and p L p.

For the velocity of the drop we obtain:

_cKa
2n

Comparing this expression with (1) we see that the mobility of a
Mercury drop surrounded by a double layer equals °/, the mobility
Which would be possessed by a solid particle in the same medium,
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carrying a free charge equal to the charge on the inner sheet of the
double layer and */, the mobility of the same particle were it liquid,
Inasmuch as the charge density in the double layer can be many times
greater than the possible density of a free charge, mercury drops in g
well conducting viscous medium possess relatively exceptionally
high mobilities.

In the derivation of equation (32) two assumptions are made which
limit its applicability. The first consists in a neglect of the ohmic
surface conductivity of the drop compared with the bulk conducti-
vily of the solution in computing the ponderomotive forces and the
effect of self-retardation. As was shown at the end of Section 3, this

is permissible only under the condition C—Fsa &1 which is, however,

usually satisfied in experiments with macroscopical drops. According
to the second, more essential assumption, in electrocapillary motions
the surface tension at all points of the drop should depend only on the
potential. This condition will not be fulfilled, for example, if the
solution contains surface-active substances and if, due to the slow-
ness of the adsorption or diffusion process, some time is needed for
equilibrium to set in between the interface and the bulk of the solu-
tion, In this case, even with constant ¢ the interfacial tension
will be greater on those parts of the drop where the mercury surface
is expanded (the right-hand side in Fig. 2) and less where it is com-
pressed (the left-hand side), this causes an additional drag on the
molion of the surface and a decrease in its mobility®.

Similar phenomena should take place even in the absence of sub-
stances specifically adsorbed, if only at the given potential equi-
librium between the boundary layer and the bulk of the solution does
nol set in instantaneously. Thus, for example, if the surface of the
mercury is charged negatively and the solution, in addition to uni-
valent cations contains also polyvalent ones, there will be a relative
excess of the latterin the surface layer, and, when the surface contracts,
the adjoining layers of the solution become richer in polyvalent ca-
tions; as a result, although the potential is everywhere the same, the
interfacial tension on various parts of the surface is different. It is

21 B, Levich, Contribution to the lheory of surface phenomena.
Moscow 1940 Publishers «Soviet Science».
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obvious that the current through the solution cannot equalize such
differences in composition, this being possible only by diffusion,
i. e. by a comparatively slow process; hence the resulting retarda-
iion effects can be quite considerable.

The validity of the theory has also limitations due to increase in
the velocily and potential gradient. It follows from the exact theory
that if the variation in the interfacial tension over the surface is
small compared with its initial value and the movement of the drop
takes place in the region of small values of the Reynolds number,
the drop will retain its spherical form unchanged during the motion.
Numerical estimations, however, show that for large values of = and
sulficiently large drops the velocities U calculated by formula (32)
are so great that the Reynolds number Re =Ua/v (v = p/p — kinematic
viscosity of the solution, p—its density) is by no means small com-
pared to unity. In this case formula (30) is no longer valid and must
be modified accordingly.

The motion of liquid bodies at values of the Reynolds number
large compared with unity has been insufficiently studied in hydro-
dynamics both experimentally and theoretically. In such motion
the drop loses its spherical form and becomes oval in shape with its
obtuse end advancing. As to the forces acting on the drop, it follows
from general considerations that under these conditions the viscous
drag becomes small compared with the dynamical pressure and can
be neglected.

The dynamical pressure per unit area of the drop surface may be
expressed as follows:

P = pC.ngg

where C; is the coefficient of resistance, which is an involved function
of the Reynolds number. The form of this function in the case of a
liquid drop is unknown. One may assume, however, that it does not
di_”el' very much from the similar function for a solid ovaloid and that
With increase in Re the coefficient of resistance at first falls off rather
Sleeply and then remains almost constant in a wide interval of Rey-
tolds numbers.

For o very rough estimate of the velocity of the drop at values of
Re> 1 one may substitute the dynamic pressure for the viscous drag

Act: i v
1 Physicoehimiea U.R.S.S. Vol. XX. No, 6. 3
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in formula (30) and write:
pC,«U* ~ zFE

v~y -5% (34)

Inasmuch as C; is an unknown function here and can be considered
conslant only in the roughest approximation, formula (34) bears but
a semi-quantitative character. It shows thal at large values of Re
the velocity of the drop should increase with the charge more slowly
than follows from formula (32) and should depend but slightly, on
the viscosity of the solution and the mercury.

One is inclined to think that part of the changes in the form of
the drop described by Christiansen were due to this very effect
(simple estimates show that in these experiments the value of Re
was considerably greater than unity) rather than to the variation of
the interfacial lension over the surface of the drop, as Christiansen
presumed.

This is also evident from the circumstance that if the change in
the form of the drop were caused by the variation of the interfacial
tension, the drop would take the form of an ovaloid with its narrow
end pointing in the direction of motion, instead of in the opposite
direction, as is actually the case. Indeed, the interfacial lension in
the forward part of the drop is lowered, so that if the change in form
were due to variation of the interfacial tension, this part should bulge
out forming the narrow end of the drop.

Up to now we assumed in the calculations that the maximum varia-
tion of the potential of the drop is small compared with the
initial potential jump.

=

"?o:a‘

where C is the capacity of the double layer.
The maximum change of the potential jump in the double
layer (Part III) is
(2p+3p)  3Ea
2P+3I-"+57: 2
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Hence for the theory to be valid the inequality

_gitm‘_se . Ea € -CST (35)
2pt3p’ -

x

must be satisfied. This will always be so if Eago,.

If the inequality (35) is not satisfied, we may no longer neglect
the variation of the charge density over the surface of the drop.In
fact, this variation may be so great, that one side of the drop may be
charged positively, the other negatively. In such a case a motion of
the fluid described above but of opposite direction should arise on
both ends of the drop. The resulting velocity of the drop should
obviously fall off sharply thereby, and it becomes possible for the
drop to break up, as Christiansen actually observed.

Let us now consider the case of a partially polarizable drop. Since
we assume that the change of the potential jump at the metal —solution
interface upon passage of the current is small, then if the drop is to
be incompletely polarizable, 7. e. if ions are to be neutralized and to
form on its surface, an interchange of ions between the metal and
the solution must also occur before the current is applied, as e. g.
in the case of a mercury drop in a solution containing Hg, ions, or a
drop of zinc amalgam in a solution ‘containing Zn** ions.

In the case of a partially polarizable drop, as it was seen
in the preceding section, the influence of the current passing
through the drop reduces, according to equation (28a), the pon-

deromotive forces in the ratio of 1:(1-{—_—%9). This refers to

both the forces depending on the external field and those aris-
ing from the effect af self-retardation. Formula (32a) should,
therefore, be written in the form

a N\-?!
U— #Fa (1+§;v) . sba

- 2 o G a g’
2F+3|-'-'+E' (1+2—j7p) (2F+3F'}(1+§x—w) oz

(36)
Since, according to equation (29a), for an incompletely
Polarizable drop

A, =3Ea (1455 ),

a*
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equation (33) must be replaced in this case by the following:

Uzl S‘Q(Dﬂ]
: po @
243 4+ — (14 —

U ( 2w

= o (36a)

According to equation (36), which will be derived more strict-
ly in Part III, with decreasing w the velocity of the drop dimi-
nishes. The influence of the incomplete polerizability disappears
il w is sufficiently large compared with a/x and if the drop is
in the second regime of motion. Indeed, if the external ficld is
completely neutralized by the convection current due to the mo-
tion of the double layer, then the possibility of a current pass-
ing through the drop will not affect the velocity. However, cs
was shown in Section III, the derivation of equation (28a) im-
plies that  is independent of 0,

In the case of a moving drop, whose motion determines the regime
of stirring, this condition is not fulfilled.

Let us consider qualitatively the phenomena which should be
observed in this case for a positively charged drop (Fig. 2), e. g. a
drop of mercury in a solution of a mercury sall. As the current flows
through the drop, mercury ions are formed on the right-hand side
of the surface increasing the ion concentration in the solution. On
the left-hand side of the drop, on the contrary, ions are discharged
and their concentration in the solution is correspondingly diminished.
The changes in concentration which thus take place are, however,
different in magnitude. Owing to the electrocapillary motions, a
current of the fresh solution of the initial concentration flows to
the right-hand side of the drop, whence, after hecoming enriched, il
streams on to the left-hand side. Here the excess ions are deposited
sn the mercury, so that the solution which flows away from the drop
n the direction of negative y has on the average recovered the ini-
ial value of the concentration. Since during the time of flow the
excess mercury ions will diffuse some distance from the surface of
the drop into the solution, the layer of liquid adjacent to the left-
hand side of the drop will have a concentration slightly lower than
the original value while at a great distance the concentration of the
solution will remain enhanced for some time. At a sufficiently large
distance from the drop all these differences should disappear and
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at all points in the solution the concentration should return to its
initial value. With such a distribution of concentration it is evident
that the change in the concentration compared with the initial value,
and hence the variation of the potential, are greater near the right-
pand side of the drop than near the left-hand side. In other words,
as was shown above, the quantity w depends on the angle 6 and falls
off as B varies from O to =. Under these conditions the current should
also cause a variation in the average value of the potential jump in
the surface layer in such a direction as to bring about an increase in
the positive charge of the drop.

If the drop is negatively charged, the whole picture is reversed.
The liquid flows relative to the drop from left to right, and the ions
are deposited out of asolution with the initial concentration of metal-
lic ions. The depleted solution flows to the right-hand part of the
drop, where its concentration is restored to the initial value. Under:
these conditions the magnitude of the change in the potential will
be greater on the left-hand side of the drop than on the right-hand
side, and the average value of the potential of the drop will be shift-
ed in the sense of increasing negative charge of the metal surface.

Such an intricate dependence of w on  prevents an exact compu-
tation of the influence of incomplete polarizability on the velocity
of motion. An approximate estimate may be given by making use
of equation (36) with an average value of w. Such a value may be
obtained from the expression for the density of the limiting diffusion
current j, and the relation w=RT/nyFj,. B. Levich (unpublished
data) found that the average value of the density of the limiting
diffusion current in the case of a liquid drop is

Ja= !;—:E;i =0.85 (UTD)”SI”MFCW (37)

and in the case of a solid drop

Ja _ 4.1 (U;{”)”*‘nmmu. (38)

}dzfma"

?Ere J4 denotes the total diffusion current onto the drop, ny,
(iid Cq—respectively the valency and initial concentration
gram-equivalent per cm®) of ions of the drop metal.
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As an example let us determine the magnitude of the €06f-
ficient k= 1+;79 with a=107%, in the case of the deviation in
an electric fieldof a mercury drop, falling under the influence of gra-
vily in a solution containing a neutral electrolyte of concen tration
¢ and mercury jons of concentration cy. It is assumed that the
hydrodynamic conditions of motion of a liquid drop are satisfied

g? 4 . — a
(Wﬂm}' & 1). Since U ~ 30 cm/sec. D~ 0.8 - 10°%, x ~ 1.2-10? ¢,

nM:Z’

& _0.85U"D a oy 1y
Qaw 9, RT c
< f‘a

(39)

Thus the quantity k= 1—}—2%,, which can be called the coef-

ficient of depolarization, depends on the ratio of the concentra-
tion of the ionsof the metalof the drop to theoverall concentration

of the solution. For %, ~ 107* this coefficient already differs notice-

ably from unity, and in the case ¢y =c¢, i. e. for a mercury drop in a
solution containing only a mercury salt, the deviation of the falling
drop in an electric field is approximately one hundred times less
than in the case of an ideally polarizable drop. It is essential to point
out that contrary to statements encountered in the literature, the
incomplete polarizability of a drop always makes its mobility less
than that of an ideally polarizable drop.

The relations which we have deduced for the mobility of drops
in an electric field could not be verified on the experimental mate-
rial available in the literature. Christiansen, who determined quan
titatively the deviation of falling drops, did not make simultaneous
observations on the time of fall. The dimensions of the drops in his
experiments were so considerable (a=5 x 107*) that it is impossible
to attempt even an approximate estimate of their rates of fall in water
by Stokes’ formula.

It should be noted that in agreement with equation (31) the
magnitude of the deviations in dilute solutions did not depend on the
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field E, but on the density of the current flowing through the solu-
tion. In this institute experiments are being carried out at the pre-
sent moment by I. Bagotskaya on determining the mobility of mer-
cury ions in water—glycerine solutions of electrolytes. The results
obtained so far agree in order of magnitude with the theory here
developed.

The mobility of the drops calculated by equation (32a) falls off
with diminishing radius and for a=10"* ¢m (which corresponds to
the particle dimensions in the mercury sols investigated by Bull and
Séllner °), at 10”* normal concentration, x~107%, e~.2 3 107 it should
equal ~ 5x 10" cm/sec. per V/em., i e. should approach the
usual electrokinetic mobilities. However, a consideration of the
experimental data in this paper, in particular, the appearance
of negative values of the charge in the presence of capillary-active
anions leads us to the conclusion that the velocity of the particles
in sols is nol determined by the total charge, but rather by
the effective electrokinetic charge. This is incompatible with
equation (32a), at any rate as long as the dimensions of the particle
exceed considerably the thickness of the double layer. We are forc-
ed to the assumption that the surface of the mercury in the sols
investigated had adsorbed impurities from the solution or become
covered by a film of insoluble mercury salts and, hence, lost its
complete mobility, as a result of which the drops of mercury
in the sol behaved like solid particles. The electrokinetic properties
of mercury sols deserve new investigation by improved experimental
methods.

Summary

1. A quantitative theory of the action of an external electric field
has been given for the cases of non-conducting particles, ideally
polarizable and incompletely polarizable metallic particles.

It has been shown that in the case of a metallic particle the points
of application of the forces acting on the charges of opposite sign are
dlﬁ}?laced relative to one another a distance of the order of the particle
radius rather than the thickness of the double layer, as in the case of
4 non-conducting particle.
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2. The mechanism of the electrokinetic motions of solid nop.
conducting and conducting particles is compared with the electrg.
capillary motions of metallic drops, and the theory of electrocapillary
molions is given for the case of an ideally polarizable drop. It ig
shown that two regimes of electrocapillary motions exist. In one of
them the velocity of motion of an ideally polarizable particle differs
only by a numerical coefficient of the order of unity from the velocity
of a particle carrying a free charge equal to the total charge of the
inner sheet of the double layer on the surface of the drop. In the
other, the convection current due to the motion of the particle sur-
face almost completely neutralizes the external electric field, the
velocity of motion of the particle is inversely proportional to its
charge density. The conditions (low conductivity, low viscosity of
the medium, large value of the charge) favouring the transition from
the first regime to the second have been determined. It is shown that
incomplete polarizability of the drop decreases its mobility,
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