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of the Solution of Metals in Acids
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1, Fundamental assumptions and discussion of results

The question as to the ohmic resistance of iocal cells has been
frequently discussed in the literature, though no satisfactory compu-
tation- of this resistance has hitherto been carried out.

In the present paper a calculation is made of an approxXimate
value of the ohmic resistance for the instance in which the cathode
of a local cell may be considered sufficiently polarized as is the
:ase of the solution of metals with evolution of hydrogen. In what
(0llows the assumptions underlying the calculation are revised and
‘he limits of its applicability specified.

If the dimensions of the inclusions are sufficiently small (we
shall subsequently restrict ourselves to this particular case) and
their spacing sufficiently great, a local ®ell may be treated as a
system consisting of an infinite metal plane surface (anode) contain-
ng an inclusion of a foreign metal (cathode), both being covered
by an electrolyte layer of infinite thickness.

When the size of the inclusion is small, its shape is evidently
immaterial. It may be readily seen that for a given area of inciu-
sion the maximum ohmic resistance will correspond to an inclusion
in the form of a disk, the geometric paths of the currentsthen having
a maximum length.

In this investigation we are interested in the maximum values
of the ohmic resistances of local cells. We shall accordingly assume
in the sequel that the inclusion is a flat disk of radius r . It will
also be assumed that the electrode surface is free of any films of
insoluble compounds.

Acta Physicochimica U.R.S.S. Vol. XVIII. No. 5. ) 7 1
A 2



325 B. Levich and A. Frumkin

We shall neglect anodic polarization and consider the anode
surface to be an equipotential one. The potential of the anode
will be taken as zero
a:O‘ (1)

Our task being confined to the determination of the ohmic poten-
tial drop in the solution, we can neglect the interfacial potential
between the anode and the solution in the electric double layer and
assume the potential in the solution in the immediate vicinity of
the anode to be also equal to zero.

The potential difference, ¢, between the cathode and the solu-

tion is given by

-G

¢ =@ —a—blnj, (2)

where ¢, is the reversible hydrogen electrode potential in the given
solution with respect to the anode, whilst the last two terms repre-
sent the hydrogen overvoltage at the cathode which is connected
with the normal component of current density ;., at the cathode—
electrolyte interface by the well known Tafel relation:

m::a—{—bln]'n.

The constant e¢ in Tafel’s formula depends upon the nature
of the metal, whilst b is nearly constant for all metals and equals

b:QRFT:E)O % 10-3V

when natural logarithms are used.

During the operation of a local cell the current flows from the
anode through the electrolyte to the cathede and from the latter
directly to the metal constituting the anode. The ohmic resistance
of the second part of the circuit being evidently low, the ohmic
resistance of a local cell must be equal to the resistance within the
electrolyte.

To determine the latter by the usual method employed for the
computation of the ohmic resistance of massive conductors, it is
necessary to integrate the Laplace equation for the potential with
the proper boundary conditions at the anode and cathode. Knowing
the potential distribution we can obtain the strength of the field

E= —grad g,
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and the corresponding current density
j:ZE

where % is the conductivity of the ejectrolyte.
Dividing the potential difference by the current density obtain-
_ed we may find the specific ohmic resistance for the curfént flow-
ing ‘Iccota giyen point of the cathode. . If this proves to vary from
I}‘)eosxirswtan(ée‘pomt, it is, of course, impossible to speak of the total
The boundary condition gi equati
i (Zy) A scaatrlfozs‘/en by equation (1) for the anode
However, inasmuch as in boundary condition (2) the potential
at the lcathode depends upon the current density and this depen-
dence 15,‘ moreover, non-linear, the solution of such a lgoundarx'
problem is extremely difficult. It turns out, however, that, in the
c;.ase where the cathode is sufficiently strongly polariz;d ar{ appro-
Ximate solution of the problem may be suggested whict; provef to
apply to a number of cases presenting practical interest \
From equation (2) we have ! '

Let ¢, denote the potential in the soluti i
- entj: ution in the vicini
of the cathode. Then we may write | ety

Po=Pss Po= 0.

As the polarization of the cathode increases, the quantity o, de-
creases, and ¢, tends to o,, i. e. to zero, according to our ch(;i&c\‘e of
zero potential. Let it be assumed that the absolute value of o

a.nd hence of ¢, is considerably smaller than the constant t%:
tial & in Tafel's formula, so that S

P

et ~ 1. (3)
Then we have
Po—a
==

' In'this case ?he normal component of the current density is
as a first approximation, constant throughout the cathode. i

All subsequent caiculations refe i i
r to this particula a
strongly polarized cathode. ’ T
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After the solution of the problem is found, it will be shown
that it is not contradictory, i. e. that the potential thus obtained
actually satisfies inequality (3).

Assuming that conditions (3) is fulfilled and the normal compo-
nent of the current density is constant throughout the cathode,
we reduce our problem to the solution of the Laplace equation

: Ap =0, (4)
with the boundary conditions
o, =0 { 1’)
at the anode, and
a7 O -
jn=—2 (55 ) =i 2)
at the cathode, where
Po— 0
ju:e b 5

and the derivative with respect to the normal is taken at the ca-
thode surface. The inward direction of the normal in the metal is
considered positive and the potential at an infinite distance is taken
ds Zero.

The solution of this boundary problem is given in a separate
section (Section 2) for convenience of those readers who are not inte-
rested in the computative part of the paper. In the present section
we shall only give the results obtained.

The solution vields the following expression for the potential

on the cathode:

2wge </ 1 L T\ Bl
ga— Ly e r=r)

where r is the distance from the given point of the cathode toits centre.
The maximum negative potential will be in the centre of the
cathode, where it is given by

e == 2rlllO
Ymax — "1:,7 C;

Fig. 1 shows the potential distribution on the cathode.
The specific ohmic resistance for the current flowing from the
anode to the given point of the cathode is

9. ST 7N
R— Zh" l/ 1 — <L> P
(A fu
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The maximum resistance is opposed to the current flowing to
the centre of the cathode:

9
R =T,
MAX 55 g

o

For an inclusion of thesize r,~ 10-* cm. in normal sulphuric
acid (x~ 2 % 10~!) the maximum specific resistance equals

R~3x10-*%,
TR SO S
s 7 F
\ [
\\ I

|
‘ |
I ]
| !
| |
: !

Fig. 1. Distribution of current density
(dashed curve) and of potential (full curve).

and we can see that under these conditions the ohmic resistance
of a local cell is extremely small.

Let us now consider the scope of application of the formulae
obtained.

It is evident that our fundamental assumption as to the almost
complete polarization of the cathode (3) will be fulfilled in any
case, provided the following inequality is satisfied: —

:
. | o
lOmax | € b,

or, substituting the expression for gpux,

2rolo . (5)
Adopting the values of r, and =z indicated above we shall rea-
dily find that the current density j, at the cathode should satisfy
the inequality
jo < 160 Alem.>.
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(1940, wina, Acta Physicochimica URSS, 12, 246
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tions will be smaller than the value resulting from the above calcu-
lation.

Fig. | shows also the current density distribution for the catho-
dic and anodic currents. It will be seen that the anodic current
density becomes infinite for r=r,. Actually, however, those parts
of the anode, through which a current of considerable density flows,
will be polarized and the current density will remain finite through-
out the anode.

It should moreover be emphasized that the condition of appli-
cability of our calculation is at the same time the condition under
which the concentration change at the cathode of a local cell may
be neglected.

It has already been shown by Nernst that the problem of the
diffusion of ions through an electrolyte in the presence of immobile
ions of the opposite sign may be reduced to the problem of the diffu-
sion of neutral atoms which proceeds, however, with a somewhat
modified diffusion coefficient.

In estimating the role of diffusion and the conditions under
which the concentration polarization occurs, it is therefore possible
to use the expression for the diffusion current obtained in solving
the problem of the diffusion of neutral particles from a plane sur-
face to a local inclusion with the corresponding diffusion coeficient.
The problem of the diffusion of neutral particles from a plane sur-

face to a flat circular inclusion has been solved by Gr 6 ber and
B e

The solution shows that the saturation value of the diffusion
current density at the centre of the cathode, i. e¢. at a point where
it has a minimum value, is given by

¢ *
2D*c, E (6)

]l m — 1,

where D" is the effective diffusion coefficient of the hydrogen ion
and ¢, its concentration. Let us caiculate the ratio of the minimum
saturation current density of the diffusion current to the current
density j.i at which the above calculation ceases to hold. The lat-
ter may, evidently, be obtained if we put |¢ y.x |~ b, so that we have

s )

ot = =
]C lru

*Grober und Erk, «Die Grundgesetze der Warmeiibertragungy,
J. Springer, 1933.
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whence
Fiim N ‘“),*COF,
icril - =tk .
- . : = . | o Fe,D
Substituting 6 =2RT' F and the value of conductivity = - - i
we can see that the order of magnitude of this ratio is
f)im D*
— N —— 1
Jerit D

where D is the coefficient of diffusion of the electrolyte.

In other words, when the current density becomes comparable
with the critical value j., defined by equation (7), considerable
concentration gradients must appear in the solution to make up for
the toss of hydrogen ions due to their discharge on the cathode.
Otherwise, the diffusion current density at the centre of the cathode
wil be small compared with ji;,, and relation (7)cannot be satisfied.

It is therefore inexpedient to take account of the ohmic poten-
tial drop where the concentration change is neglected as is usually
done in applying Palmer’s classical formula which assumes a con-
siderable ohmic potential drop and a constant concentration of
the solution.

The same conclusion results from considerations of a general
nature, concerning the distribution of ions during steady diffusion
in an electric field.

As is known, the concentration of immobile ions (anions at the
cathode, e. g. SO,”” anions) is given by Boltzmann's formula

€ = (C_x)o e_l{T_ or @= }f;; In I::)'(; . (8\
where 1,4 is the valency of the anion, c¢,—its concentration at some
point and (c4), —its concentration at a sufficient distance from the
electrode.

From this formula it follows directly that, if the potential drop
is small, the concentration is nearly constant throughout the solu-
tion. If, on the contrary, a large potential drop exists in the solu-
RT b
ngF  2ny4
both the change of concentration in the solution and the concentra-
tion polarization.

tion, so that ‘¢ > , it is necessary to allow for
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On applying Boltzmann's formula we at once come to the con-
clusion that the ohmic potential drop at the electrode surface under
stationary conditions, i. e. ¢., equals the concentration polari-
zation for an electrode reversible with respect to a cation whose
valency would be n,. The relation between the ohmic potential
drop and the concentration polarization was derived long ago by
integration of diffusion equations for the plane problem?, but has
not been taken due notice of in the electrochemical literature. Suf-
fice it to mention that in the last, otherwise excellent, paper by
Agar and Bowden on concentration polarization this rela-
tion was derived anew with an incorrect value of the preloga-
rithmic coefficient *.

The above relation between the ohmic potential drop in solu-
tion and the concentration change is valid only in the absence of
stirring, as has been assumed in our treatment. This condition may
be considered fulfilled as long as the cathode dimensions in a local
cell are small compared with the thickness of the Nernst-Brunner
diffusion layer, since, as shown by experiment, the effect of stir-
ring within this layer, whose thickness under usual conditions of
stirring amounts to 5 x 10—*—5 % 10— c¢m.*, may be neglected. This
constitutes the essential difference between local microcells and
their macromodels in which, owing to stirring, beyond the limits
of the diffusion layer, any potential drop may occur without a con-
centration gradient. It should also be borne in mind that the time
required for the establishment of stationary conditions rapidly in-
creases with an increase in the linear dimensions of the system (pro-
portionally to the square of these dimensions).

However, ohmic potential drops without any concentration gra-
dients may also occur in microcells, but this requires reactions
other than hydrogen evolution; viz. this might be the case in elec-
trocrvstallization reactions owing to the rapid displacement of the
points at which the deposition of metal takes place.

3 Baars, Handb. d..Phys. Geiger u. Scheel, 13, 559, 1928; E u ck e n,
Z. physik.- Chem., 59, 72 (1907).

*Agar and Bowden, Proc. Roy. Soc., (A) 169, 217 (1938). Agar
and Bowden calculate the ohmic potential drop in an electrolyte layer of variab-
le resistance ignoring the fact that even in the absence of current a diffusion
potential exists in such a layer.

. ° For a discussion of the theoretical value for the thickness of the diffu-
sion layer and its dependence upon the rate of stirring ¢f. B. L e vich, Acta
Physicochimica, 17, 257 (1942).
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In the case of metals in acid solutions equation (8) leads to the
following result. As long as the solution exhibits an acid reac-
tion at the cathode, i. e. until hydroxyl ions do not appear in an
appreciable amount, the ohmic potential drop in the solution can
not exceed the value

RT e o

— In — ;
naF Cye 65

where ¢, is the initial concentration of the acid, c.—its concentra-
tion at the surface, and c¢y.— the concentration of the metal salt;
under limiting conditions the quantity c¢; may fall to zero. For
the position of the cathode and anode shown in Fig. 1, the quan-

tity . & will be of the order of unity, and the ohmic potential

Me T Cs

drop must be small, as it becomes obvious, if we consider the con-
ditions of diffusion of the hydrogen ions to the cathode and of the
metal ions from the anode to the cathode and into the bulk of the
solution. There may, however, exist conditions, e. g., when the
solution of the metal occurs only at individual points rather remote

Ce

> may
Me T s ’

arise. Finally, when the relation between the overvoltage at the

cathode to the anode potential is such that the hydrogen evolu-

tion at the cathode can proceed even in an alkaline medium, the

limit imposed upon the ohmic potential difference by concentra-

tion conditions drops off.

from the cathode, under which higher values of

2. Solution of the boundary problem

To solve equation (4) with boundary conditions (1) and (2) it
is convenient to place the origin of coordinates at the centre of the
cathode and effect a transformation to elliptic coordinates (%, v, 2)
connected with the rectangular coordinates (x, ¥, 2z) by the rela-
tions:

2=1rg5n, (9)
X =r,008C, (10)
V=71 S,i“:' C(11)

r=r, )/ (1+8)(1—7),
where r is the radius vector, and r, 1s as before the radius of the
cathode.
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The surfaces & = const are surfaces of revolution of co-focal ellip-
ses having a focal length r, and axis r —0.

At £=0 the surface of revolution degenerates into a surface form-
ed by both sides of the region r<r, in the plane z =0.

The surfaces 1= const are surfaces of revolution of co-focal hyper-
bolas. The surface 1 =0 isthe region r =, lying in the plane z=0
At n=1 the surface 7= const degenerates into the z axis.

The region 0<f<<oo; 0<<n=<1; 0<{<2= fills the region
of positive values of z.

Hence it is evident that the surface £ —0 represents the cathode
of a local cell, whilst the surface 7 =0 constitutes its anode.

The Lamé coefficients in the principal quadratic form:

ds® = hed¥ + hidw® + hid%?,

are given by

2/ 1t [ =2 B
—_— = | 224 72
h;~r0 l+§§’ hr‘:ro‘/ T“ ;

b
he=r, ]/(T+ &) (1—1).

The Laplace equation for the potential ¢ (&,%,%) in elliptic
coordinates has the form:

[

"

1 K oy 109 1 d o 0%
A R L b R P
S 1 720 . P
AT TarE ()
The boundary conditions may be written as follows.
On the cathode %=0:
U 08 Y : 9
T Ba Jemo = o (13)

;c.he inward direction of the normal in the metal is considered posi-
Lve s ‘
On the anode 7 —=0:
¢, =0. (14)

At an infinite distance the potential is zero:
P =10. (15)

Let us look for a solution of equation (12) which would possess

;m axial symmetry and, Consequently, be independent of the coor-
inate C.

tive The cathodic current is considered positive and the anodic one—nega-
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Let us put
=P (1) Q (%)-

Sabstituting this expression for ¢ in (12) we obtain the follow-
ing equations from which P(7) and Q(%) may be determined:

1 2 dP (7 R ‘
7‘1;‘ [(1 _~I;’)f—v;I}J:] ~+nP (n)=0. (16)
d g2y dQ (2] " _
d:.'[l’“)“{fi‘] -nQ(E) =0, (17)

where 1 is the separation parameter.

As is known, equations (16) and (17) have no solutions unless
n—[(l--1) where [ is any integer (including zero).

The solutions of equations (16) and (17) are Legendre functions
of the first and second kinds.

The solutions of equation (17) are Legendre functions of the
variable iz and must be regular for all values lying between zero
and infinity, i. e. throughout the imaginary axis. For the solution
of equation (17) Legendre functions of the second kind should be
taken since the Legendre functions of i% of the first kind increase
indefinitely with increasing % and do not satisfy equation (15),
whereas the Legendre functions of the second kind tend to zero as =
increases.

The general solution of equation (12) thus has the following
form:

o= WA P (1) Q (id),
t

where P, (%) and Q, (i) are the corresponding Legendre functions
of the first order:

a L-3-B. . @17, L1 g9
Po)=——3—"— [n—l-.zz 7R
T LSS
2-4.(20—1)(2[—3)
1 V=l 1 15" o
Q’ “C):iw—wi ""1'"7 o _[v l+1 F [‘TT 5 9
91 1<1A Vr ) L% - A
2 2

where F is the hypergeometric function and I' is the gamma-
function.
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Substituting the expression for = in boundary conditions (14)
we obtain '

E AP (0) Q, (i) =0.

l

This condition may be satisfied by putting [ =2k 1, where [k
is an integer.

The solution of equation (12) is therefore only expressed in terms
of odd Legendre functions of the first and second kinds.

Let us now satisfy the boundary condition on the cathode.

The potential gradient (%, 7) in elliptic coordinates has the
form:

dQsx., (12
Pt () 2015

az

P .
/11— n? AN o P (7
} e F',—,:"— Ak Qe (13) Lars o 1)

RV ety 4 dn 7
where e: and e, are unit vectors plotted along the coordinate axes
in the direction of increase of the respective variables.

At the cathode surface, i. e. at £=0, the unit vector e;is direct-
ed upwards, normally to the surface z-=0, whilst e, is tangential
to the latter.

Therefore, with our choice of the positive direction of the normatl,
we have

N 1N o) (2% ()
o1 oo™ o AmetPacia () (( — 5= >;:.,,'

On the other hand,

d Qszeq (15) . )
(18 =10 00)

Substituting the latter expression in equation (13) we obtain

TN A P (1) Qak (0)= . (18)

To satisfy condition (18) it is indispensable and sufficient that
the left-hand side should be independent of v. This will be fulfil-
led if we set all coefficients Aq; ., except A, equal to zero. Then,
inasmuch as P, (7)) ==, condition(18) will enable us to determine A,.
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At the anode surface
Since we may write

Q, (0+1i0) 12- = ]/<—r'n—/\~ I {r =)
we have Hence
T
o I‘\ == I: 9 s 2l 2 1
& 2r 1 ) . :-]n s , (I_\ 1 o 2o o ) ’21\1
: jo=argetg )/ (£) =17 Py
Therefore o ] (=) —
A, L

When r approaches r,, j. becomes
whence the potential

o 22 v 2

J:Q—], P, () Q. (i3), [ | l/<10> -

P1(7I)::Tlﬂ

|
and
ic+1

Q (== m B 1 =targetgi—1.

o It may be readily seen that the total current at the anode is

"’1 ven by

1=\ hehjudzdi= —=ri,

In particular, the potential in solution at the cathode surface

as should actually be the case.
is given by

o Ee
N . 0 Summary
i i ne z=0 we
Expressing « in terms of the radius vector rin the plane
- e L=}

‘ 1. The conditions determining the behaviour of the cathode of
obtain ‘

qom— 2By 1= (T (19)

the current flowing from the anode

of
ecific ohmic resistance f - .
i the coordinate r 1s

to points on the cathode having

R_—L";fﬁ:zr“ /1, <m ; (20)
B iﬂ (i}
The anodic current density is given by
. /0% O\ )
fo= T K on /1; 0

On the anode surface the unit vector

tal normally to the surface, whilst e; is tangen

of the metal.
Hence, the inward direction of
taken as posmve we have |
P"” 2o (zarg cigi—1)-

i W (e o T

is directed from the me-
tial to the surface

the normal in the metal being

a local cell are considered, the cathode being treated as an inclu-
sion having the shape of a disk of radius r,embedded in the surround-
ing mass of the metal. The calculation is carried out assuming the
anode to be non-polarizable and the cathode strongly polarized.
Under these conditions the specific resistance per unit area of the

cathode surface at its centre, where it is at a maximum, is i:r/‘ ;
where = is the conductivity of the electrolyte.

2. A calculation carried out by this formula shows that the
ohmic potential drop in the case of solution of zinc with inclusions
of nickel in sulphuric acid does not exceed 13mV if r,~ 10-%

3. It is shown that in the cases where the ohmic potential drop
in the solution cannot be neglected, the change of the electrolyte

concentration at the cathode surface should simultaneously be taken
into account.

Academy of Sciences of the USSR,
Institute of Colloid- and Electrochemistry.
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Addendum

The leading idea of this investigation was exposed by one of
us in a paper presented at the Second All-Union Meeting on Me-
tal Corrosion (Proceedings of the Second All-Union Meeting on
Metal Corrosion, Moscow, 1940). The Russian text appeared in
extenso in the Journ. Phys. Chem. (Russ.), 15, 748 (1941), but
the publication in Acta Physicochimica was unfortunately delayed
by war time conditions.

After the publication of the Russian text, we became acquainted
with the article of C. W a g ner, «Chemische Reaktionen der Me-
talle» in «Handbuch der Metallphysik», I, Teit 11, Leipzig, 1940,
which contains a computation similar to ours for the case of an
inclusion having the form of a long narrow strip. Wagner arrives
at an expression for the ohmic drop of potential which differs from
equation (19) by the value of the numeric coefficient only. Some
of Wagner’s other conclusions seem to us not altogether correct.
On p. 199 Wagner states that the ohmic drop of potential in a local
cell always remains small, whilst, as it was shown by us, under
special geometric conditions or when the solution becomes alkaline
through hydrogen evolution, the ohmic drop still can rise to consi-
derable values. It is doubtful whether use can be made of Wagner's
equation (74) for the computation of the ohmic drop corresponding
to the limiting current, as the latter refers to the case of inclusions,
which are large as compared with the dimensions of the diffusion
layer. Obviously under these conditions the ohmic drop will be
determined by the conditions of stirring and can be made indefini-
tely large by a suitable choice of these conditions. We can arrive
at more definite conclusions only in calculating the value of the
limiting current under the assumption that the linear dimensions
of the inclusion are small when compared with the thickness of
the diffusion laver as it was done in our paper [equation (6)].



