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THEORY OF HOMOGENEOUS REACTIONS INVOLVING 
PROTON TRANSFER* 
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and Yu. I. KHARKATS 

Institute for Electrochemistry, Academy of Sciences, Moscow, U.S.S.R. 

Abstract-A quantum-mechanical theory for proton transfer processes in solutions is given. The 
BrPrnsted rule and isotope effect for these processes are also discussed. 

R&um&-Theorie quanta-mechanique du processus du transfert du proton dans la solution. Dis- 
cussion de la r&gle de Brnrnsted et du effet isotopique, propre aux processus. 

Zusammenfassung-Eine quantenmechanische Theorie der Protoneniibergangreaktionen in die 
Losungen ist entwickelt. Die Branstedsche Regel und der Isotopeneffekt fir diese Vor@nge sind 
diskutiert. 

WE HAVE treated1 theoretically chemical reactions in solutions involving charge 
transfer, considerable attention being given to the simplest possible type of these 
reactions-redox reactions occurring without breaking or deformation of chemical 
bonds. 

Good agreement between theory and experiment can be considered as confhma- 
tion both of the main assumptions of the theory-the assumption of the existence 
of a strong interaction between ion and polar solvent model used. This enabled us to 
pass to the consideration of the general case of a charge-transfer reaction in polar 
solvents involving breaking of chemical bonds. The general theory has been given,e*s 
and also the theory of reactions involving proton transfer under the conditions of an 
electrode process (theory of hydrogen overvoltage).4*6 

In this paper we shall discuss in detail the results of a quantum-mechanical cal- 
culation of the rate constant of homogeneous proton transfer reactions? 

AH + B--+A-+ BH. (1) 

In our calculations we use the model described in detail in the treatment of the 
hydrogen-ion discharge on metals. 4*6 In particular, in describing the solvent we use 
as before a dielectric continuum approximation. In describing the proton state in AH 
and BH compounds, we take into consideration the fact that proton forms strong 
enough chemical bonds. Characteristic proton vibration frequencies, o, along the 
valence bonds lie within the range ca 2600-3600 cm-l. In all known cases at room 

temperature hwi is much larger than /CT, whence it follows that there is large prob- 
ability that in the initial and final states the proton is localized at ground vibrational 
Ievels. In this study, however, account was taken of excited vibrational levels of the 
proton in the initial and final states. 

In a quantum-mechanical calculation of the reaction rate constant, the proton 

* Manuscript received 4 December 1968. 
t For convenience, we shall consider, without loss of generality, AH, BH to be neutral molecules, 

and A- and B- their respective ions. 
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state in the AH molecule was taken as the initial state. Proton interaction with ion B- 
appeared as a perturbation leading to proton transfer from the initial to final state in 
the BH molecule. As was shown,5 the reaction path can be conveniently interpreted, 
using, instead of usual electron terms, the electron-proton terms, wherethegeneralized 
co-ordinate of the only classical subsystem-the solvent-appears as the reaction 
co-ordinate. According to the condition hoi > kT, the proton motion, just as the 
electron motion, is of an essentially quantum nature. 

The Hamlitonian of the system in which a proton exchange between two particles 
occurs can be conveniently written as 

S(xa, XB 3 Rq) = xi"(x,4,XBv R,q) f vp~(XBy RI 

= ~io(x_4,xB, R,q) + &&A, @- (2) 

where xAs xB are electron co-ordinates of ion A- and in ion B-, respectively, R is the 
proton co-ordinate, q a set of normal co-ordinates of the solvent, Xi0 and XS” are the 
unperturbed Hamiltonians of the system in initial and final states, respectively and 
V,, and v,B the energies of proton interaction with ion A- and B- respectively. 

Operator Xi0 includes the energy of the ion B- in the solvent, the energy of the 
AH molecule in the solvent, and the Hamiltonian of the solvent proper (2). Operator 
tif” has a similar sense and differs from LF,” only in that proton is bound with ion B- 
and ion A- is free. In this case the interaction of proton bound in AH molecule, 
with ion B- which is described by the term Vpn(xn, R) isolated in Hamiltonian (2), 
leads to the proton jump from AH to B-. Accordingly, the term VpA(xA, R) leads to 
the proton jump from BH to A-. 

ADIABATIC APPROXIMATION 

The system under consideration is characterized by the presence of three basic 
types of frequencies: lrequencies of orientational (librational) vibrations of the 
medium dipoles (w,), frequencies of vibrations of bound proton in initial and final 
states (cu,) and frequencies of electron motion in reacting ions (o,). The value of LD~ 
can be found from measurements of the orientational relaxation times. In particular, 
for water 0, w 10 l1 s-l. These three types of frequencies differ significantly in their 
orders of magnitude: CIJ,, RS 1011 s-l < wp ss 1Ol4 s-l < o, = 1015 s-l_ In accordance 
with this frequencies ratio, it is possible to divide the system consideration into 
sub-systems by the following methods: 

(1) the fast sub-system-electron, the slow sub-system-proton and solvent 
(adiabatic approximation) ; 

(2) the fastest sub-system-electron, a slower sub-system-proton, the slowest 
sub-system-solvent (double adiabatic approximation). 

As known from quantum mechanics, such division of the system into slow and 
fast sub-systems permits us to use adiabatic perturbation theory. Two methods of 
solution of the problem are possible, corresponding to the two methods of division 
of the system. Below we shall consider these two methods and show that both the 
adiabatic approximation and the double adiabatic approximation lead to practically 
the same results. 

(a) Adiabatic perturbation theory 

The physical significance of this approximation is that in determining the wave 
function of the electron sub-system it is possible to ignore the kinetic energy of the slow 
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sub-system, proton and solvent, owing to the slowness of their motion. In other 
words, the electron state can be accurately enough determined considering proton 
and solvent to be nearly stationary. The adiabatic approximation for the slow sub- 
system involves interaction of proton and solvent with the diffuse cloud of a fast 
moving electron, rather than with the “point” electron. This corresponds to the 
concept of the wave function of initial and final states as 

‘rP(X AT&~, R,d = YB(%3,ff)~A(xA, R,q)XA(&q)~ 

yI*(xA, XB,R,q) = $%(XB, R, q)yA(xAd&B(R,q), 

@a) 

(3b) 

where va(xA, R, q)yB(xB, q) are the electron wave-functions of the initial state, 

VA(~AP qhB(xB9 R, q) the electron wave-functions of the final state and XA(R, q), 
xu(R, q) wave functions of the slow sub-system in the initial and final state, respec- 
tively. 

It can be easily shown that the potential energies of the slow sub-system in the 
initial and final states are determined by the expressions 

uie(%q) = cA(R,q) + thl;qK2 + EB(q), W 

ute@,q) = EA(q) + i-hoo~qK2 + %(R,q), Cab) 

where EA(R, q), &B(R,q) are the energies of molecules AH and BH present in the 
solvent with fixed co-ordinates of proton and solvent, and CA@), +(q) the energies 
of ions A- and B- with fixed co-ordinates of solvent. The functions Uie(R, q) and 
Ufe(R, q) are usually called potential energy surfaces or electron terms of the system. 
For simplification, in this section we shall assume proton to perform in AH and BH 
molecules harmonic motion with the same frequencies oi = wi = CO,,. Then, passing 
to new generalized co-ordinates, we obtain the following expressions for the terms 

vi, = JA, f @%Crl - 70)~ + $fr0,E2, Pa) 

W, = JB~ + Pqd + Vq,(E - &12, (5b) 
where 

60 = (km - ROB) 
J 

T; IRoA-RoBI=AR, (6) 

TO2 = z(qKOA - qKOd2. 
K 

In formulae (6) and (7) qKoA, qKou and Roa, RoB are equilibrium co-ordinates of 
solvent and proton in AH and BH moIecules, respectively, and M is the proton mass. 
The terms JA”, JBe are of the form 

JAM = l atRo,,qOA) + %&A) + @~,&;,A, @a> 

JBe = EB(ROB> qOB) f 'A($3d + @%&&I,. @b) 

Let us note that we have written the terms Uie and Uie as two-dimensional terms 
and we have discarded the terms (Fig. 1) which do not change upon proton transfer 
from the initial to the final state. From the assumption made here of the absence of 
the solvent frequency dispersion, it is possible to interpret clearly the reaction path 
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FIG. 1. 

on the potential energy surface. As shown by cakulation, the result given in this 
paper is valid also under the assumption of a small frequency dispersion3e4 

The assumption that proton performs harmonic vibrations permits us to consider 
the motion of proton and solvent independently and to express the function xa.n(r], 5) 
in terms of the product of oscillatory functions of proton and solvent, 

Xa,n(% 8 = @*.r3(r‘)9k3(rl)- (9) 

(b) Double adiabatic perturbation theory 

In a double adiabatic approximation the wave functions of the initial and final 
states can be written as the product of the wave functions of the three sub-systems, 

y: = ~AbA, R,q)WB(XB,q)~*(R,q)p)A(q), WW 

yi" = WA(~A~~)%~ (xs, K!?Yb(~,q) 9%3(q), (10b) 

where @A,,(R, q) are oscillatory wave functions describing the bound proton state in 
AH and BH molecules, and 97 a,B(q) the corresponding wave functions of solvent. 
In the approximation under consideration for the potential energies of the initial and 
final states of the slowest sub-system-solvent-we have the functions4 

14mep = JAM + P%(rl - d2, (11) 
VP -J fm'- Bm' + 3;~%r12, @lb) 

where 

J Bm’ = EA(qOB) + EF5(&q013) + @‘f + !%%I z &OB- (12) 

In expressions (12a) and (12b) the quantities c!?,, .P and &‘$r are proton vibration ener- 
gies in the initial and final states, respectively. Assuming that proton performs har- 
monic vibrations along the chemical bond, ~3’~~” = Aoi(m + &) and @& = ho,(m’ + 
+). By analogy with the electron term, we shall call the functions UieP and Uiep the 



Homogeneous reactions involving proton transfer 357 

electron-proton terms of the system. By expressing UieP and UteP in terms of (1 la) 
and (11 b) we can consider the terms as being one-dimensional (Fig. 2). 

* 

A Jo =-E~ 

I --AJ4 =nC, 

It 

AJ, =o 

-A.)%= -Es 

4* 4 

FIG. 2. 

CALCULATION OF TRANSFER PROBABILITY 

(a) Calcdation to a harmonic approximation 

Now let us calculate the proton-transfer probability from molecule AH to ion B-. 
Let us use the general formula of the perturbation theory for the transfer probability, 

The wave functions of the final and initial states of the system contained in the 
expression for the matrix element are solutions of Schriidinger’s equation for the 
unperturbed Hamiltonians Xi0 and .%‘,O, and the potential V,, contained in (13) 
describes the interaction of proton, bound in molecule AH, with ion B-, which Ieads 
to the proton jump. The quantity pt in formula (13) is the level density of the final 
state of the system equal to l/tiw,. Functions Yio and Yio belong to the states with 
equal values of total energies of the system before and after proton transfer, 

Ei = JAe + (m + 1/2W, + (n + 1/2Po, 

= Ei = JBe + (m’ + 1/2)E~+, + (n’ + 1/2)ho,. (14) 

In calculating the matrix element, we shall use Condon’s approximation, according 
to which the wave functions of the fast sub-system depend slightly on the co-ordinates 
of the slow sub-system R, q and therefore can be taken at point corresponding to the 
maximal contribution of the overlapping integral of the heavy sub-system, 

I (YB(XBP R,~hA(xA&13(R,~)~ vpBkfh(XB~~)~A(xA~ R,dXA(R,f?))!2 

= lr-A2 I h3uG 4)X*@, qH2, (1% 

where L, is exchange integral with electron wave-functions. To a harmonic approxi- 
mation, the wave function of the slow sub-system can be written as the product (9). 
To calculate the total probablity of proton transfer in unit time, it is necessary to 
carry out a statistical averaging over all possible initial states of the system and 
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summation over final states. In this case we have 

277 ILlI c 
1.2 = h . hooQ,Q2 :$ exp 

(m -t- *m% 
- kT 1 c exp _ (n + 4Pwo 

kT 1 

x 

x [@I& - o%m)12 l(%~(~)~ll(r7 - %)>I2 d I [AJi~w,-wp/co,(nz-m')-(n-n )O, (16) 

where Q1 and Q, are corresponding statistical sums, 6 is the Kronecker symbol and 
expresses the conservation of energy law (14), and AJ = JBe - JA*. Calculating the 
matrix elements and carrying out necessary summations, as well as making use of the 
fact that tie, < kT and tiw, > kT, we obtain for the mean probability ti 

X exp 
(E, + AJ - 1h.0,)~ 

- 1 4E,kT ’ 

ho0 where LO2 = - J E,kT 

2 --F’ 
E, = hcoo~2 -repolarization energy of solvent 

(17) 

upon 

proton transfer-and E,, = Ao, g . 

It should be noted in calculating the sum contained in (17) at different values of 
AJ that the main contribution to the sum is usually made by one term corresponding 
to a certain I = I*, which can be determined from the exponential factor in (17). The 

factor (%lfi%)‘z’ 
VI! 

changes less fast then the exponential factor and can be shown 

not to affect significantly the values of I*. We have 

i 

AJ- E, 
h, ' 

E, 6 AJ, 

I* z.z 0, -E, < AR E,, 

AJ+E, 
hw, ’ 

A\J=z -Es. 

Thus restricting ourselves to one term in the sum, we obtain 

G = z!$$exp(--$)(!$“exp[-z(,l*l + I’)] 

(18) 

x exp 
6% + AJ - Z*hq,)2 

- 
4kTE, 1 . (19) 

Expression (19) for the transfer probability has an Arrhenius form with the activation 
energy equal to 

E 

a 
= (E, + AJ - Z*hw,)2 + ha, 

4K 
2 (Ir*l + I*). 
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Using (18) we can rewrite (20) as 

l 
LZJ. GdJ, 

E 

a - E, < AJ < E8, (21) 

\ 0, AJ < -Em. 

Parameter Es contained in the expression for Ea is an important parameter of the 
theory, characterizing the effect of the solvent on the kinetics of a chemical reaction. 
A significant result of the present treatment is the fact that the activation energy in 
the proton-transfer reaction is characterized not by the shape of the potential wells 
determining proton vibrations in AH and BH, as was assumed in Horiuti and Polanyi 
theory l1 but by vibrational electron-proton terms of the solvent, this dependence 
being determined by a single parameter E, the repolarization energy of the solvent. 
The value of E, can be estimated theoretically3 and is a quantity of the order of l-2 eV. 
At the same time, as will be shown below, the repolarization energy of the solvent can 
be determined from experimental data on the dependence of the reaction rate constant 
on the reaction heat. 

Introducing the notion 

K* _ P.I”f=p(- $)(2r’ - 
Lo2 I/*1 ! 

(22) 

we can finally rewrite (19) for the transfer probability iT, 

fl = K* 00 e-E$ET 
2?T (23) 

The coefficient K* is usually called the transmission coefficient. It follows from 
the calculation carried out that K* characterizes the probability of a transition of the 
system from one term to the other when passing through an activated state. Generally 
speaking, it should be noted that each value of K~ corresponds to a particular term of 
the sum in (17). Therefore, the symbol K* corresponds to the term (17) which makes 
the main contribution to the transition probability. 

(b) Double adiabatic approximation 

For a double adiabatic approximation the transfer probability is determined by the 
matrix element of transfer equal to 

cyp: 1 bBl yi”> 

The functions v&B) and yB(xB, R), which describe the state of the electrons of ion 
B- in initial and of molecule BH in final states, are respectively solutions of Schr& 
dinger equations 

%&3)%&%) = EOB?#B(XB), (25) 

[%dXB) + &B(XBR)h@B, R) = EB(Rh3(XB, R)- (26) 
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On the basis of (25) and (26) let us rewrite (24) as 

07 !&A~07 = 

x dR. 
I 

~Amb(d dqa t27) 

The expression V,(R) = l B(R) - l OB iS the p0tentk.d Of .hteraCtiOn Of proton With 

ion B-, which is usually approximated by the Morse potential. Unlike redox reac- 
tions, in this case the overlapping integrals of electron wave-functions give a factor of 
the order of unity, which we shall discard. This corresponds to a slight distortion 
of electron functions when proton leaves the ion. Thus, the total transfer probability 
in unit time can be written to a double adiabatic approximation 

2w 1 2 eXp[&imP/kT] expf--8o,(n + *)/!CT] 
@=x*tiw,:?& Q, . 

Q2 

x WmdR - 4,) ~B,(R)I %,_&W2 
x I+?&& - qo)l %(qN12 * 6 ~/~o-(Qi,p-Qr~‘p/~~)-(n-n’),O, (28) 

where Q, and Q, are corresponding statistical sums. 
On the basis of the results obtained earlier, this probability can be written 

W m*m =K m’m 

Expression (29) has the same form as the corresponding formula for the electron- 
transfer probability obtained for redox reactions. But there is the following essential 
difference between them. The exponential in (29) contains the energy of proton 
vibrations, The transmission coefficient K,,,~,,, depends on the overlapping of electron 
and proton wave-functions. Then 

K,,, IL7dm12 = L,2 < 1 (for non-adiabatic reactions), (30) 

where 
Km’,,, = 1 (for adiabatic reactions), (31) 

Moreover, in the theory of redox systems in the case of nonadiabatic reactions, the 
smallness of the coefficient ~~~~ is due to slight overlapping of electron wave-functions. 
In the systems under consideration, when proton transfer occurs by a non-adiabatic 
mechanism, the smallness of ~~~~ is due to slight overlapping of proton wave-func- 
tions, and the overlapping integral of electron wave functions is of the order of unity. 
In the theory of redox reactions the solvent transition from the initial to the final 
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state was shown to follow the classical path through the intersection point of electron 
terms. In the case of proton transfer reactions in solution, the solvent transition by 
the classical path occurs on electron-proton terms. 

The proton-transfer probability calculated above permits us to interpret the reac- 
tion path by means of two-dimensional electron terms as well. In that case the corre- 
sponding diagrams are of a more complex form. Thus, activation of the solvent 
first occurs, with a fhced proton state. Then at point q*, with fixed co-ordinate of the 
solvent, the quantum transition of proton occurs, followed by the relaxation of solvent 
into a new equilibrium state. 

Knowing the proton-transfer probability in unit time, fl, it is easy to write an 
expression for the rate constant of reaction (1) as1 

n 

k = 
J 

~(R)j”,,,(R) dV w G(R*)u’ , (32) 

wheref*n_n(R) is the probability of approach of molecules to the distance R, and 
u* the effective reaction volume. 

It is clear from (28) that if harmonic oscillator functions are used as proton wave- 
functions and use is made of the Condon approximation, (28) changes exactly into 
(16), obtained for a haromonic approximation. The advantage of the first approach 
consists in the generality of analytical treatment, which permits us to elucidate some 
general physical regularities. But in order to obtain quantitative results for particular 
reactions, it is more convenient to use the double adiabatic approximation. 

THE BRC)NSTED RELATION 

On the basis of general theoretical results obtained in the investigation of the 
reaction of proton transfer from one molecule to another, we shall consider one of the 
most important relations in the kinetics of chemical reactions-the Brijnsted relation. 

In an experimental investigation of acid-base catalysis involving proton transfer 
from or to catalyst molecule, Briinsted established a relationship between the rate 
constant k of catalytic reactions and dissociation constants K of acids (bases)P 

log k = const + a log K (33) 
Later it was shown that for a certain class of reactions the Brijnsted equation expresses 
the relation between activation energy and reaction heat, 

-AE,, = oc AQ. (34) 

In a more general case (34) can be written as 

dEa 
a=-dQ’ (35) 

where a is usually called the Brijnsted coefficient. In most studies concerned with the 
investigation of the Briinsted relation, it was usually interpreted as a principle of linear 
relationship between activation energy and reaction heat. Actually, as was pointed out 
by Briinsted, a is not a constant, but can vary from one compound to another in the 
series being studied. The experimentally observed linear relationship, corresponding 
to a constant value of a, is an approximate one, valid only with reaction heat changing 
within relatively narrow limits. Experiments on proton transfer carried out recently 
for a large number of compounds corresponding to reaction heat varying within wide 
limits showed’ the coefficient to range widely between zero and unity. As is shown by 
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a calculation carried out under the assumption that proton vibrations in AH and BH 
are of a harmonic nature, the Briinsted relation for the reaction in question is of the 
form 

L 1 Em < AJ 
dEa 

u=ddT= I @J + W2 -Es < AJ < E,, (36) 

\ 0 -E, > AJ 

where the quantity -AJequal to the difference of energies at the minima of initial and 
final electron-proton terms appears as the reaction heat (see Fig. 2). ES is the re- 
organization energy of the solvent upon transition and is basic parameter of the theory. 
It follows from (36) that a ranges from 0 to 1 with the reaction heat varying from -E, 
to E,. 

The behaviour of a as the function of the reaction heat can be conveniently 
illustrated by plots of electron-proton terms. For this purpose, let us consider the 
electron-proton terms of the initial and final states corresponding to basic vibrational 
states of proton in AH and BH molecules. Figure 2 shows five different cases of 
mutual arrangement of initial and final terms. It follows from the results of calcula- 
tions that the system transition from initial to final state occurs through the inter- 
section point of the electron proton terms (ie it corresponds to the classical path). 
Therefore, the activation energy of proton transfer between the ground vibrational 
levels is equal to the distance from the initial term minimum to the intersection point 
of the terms (see Fig. 2), viz, Eaoo = (A.J + E.J4Es. Hence it follows that the 
Briinsted coefficient aoO, corresponding to proton transfer from unexcited initial to 
unexcited final state, is equal to 

AJt E, 
a 00 = 

ZE, ’ 
(37) 

It is clear from (37) that if AJ varies within the range -Es < AJ < E,, ie if the term 
of final state (term 3) is located between curves (2) and (4), the coefficient aoO is in 
the range from 0 to 1. The proton transfer corresponding to this arrangement of the 
terms we shall call normal. In the range of AJ change between -E, and ES, transfer 
occurs mainly between ground proton states. This corresponds to increasing from 0 
to 1 on the plot a(u (Fig. 3). 

t 
a 

FIG. 3. 

The transfers corresponding to terms (2) and (4) we shall call activationless and 
barrierless ones, respectively. In fact, in the case of term (2), AJ = --ES and the 
activation energy is 0. For term (4) AJ = E, and the activation energy value coincides 
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with that of reaction heat (no barrier). These transfers correspond to the aoO = 0 
and a”” = 1 respectively. Let us consider now term (1). It is clear from (37) that the 
Bransted coefficient for this term is negative, ie the activation energy increases with 
the reaction heat. The calculation shows, however, that it is in this region that the 
transfers to final excited proton states are of essential importance. As a result, the 
effective Briinsted coefficient for the reaction as a whole cannot be negative. Similarly, 
it proves that in spite of the coefficient aoo for term (5) being larger than unity, the 
effective Brijnsted coefficient remains less than unity, since in the barrierless region 
transfers from excited initial proton states are of essential importance. 

It should be noted that since in the activationless region E, = 0, the corresponding 
reaction rate constants are large. This makes the investigation of these reactions 
difficult. It should be borne in mind that in our case the reaction rate constants are 
not too large, being such that rreWt > Tail where Tpertct is the mean time necessary for 
one act of proton transfer and T dif the mean time Of the diffusional jump Of ions, ie the 
mean time of residence of reagents in the reaction zone. Since -rreeot is the reciprocal 
of the reaction rate constant, which increases with decreasing activation energy, 
it is possible that in some cases the relation r,,,,t > Tdii becomes not valid for the find 
value of activation energy. This means that in corresponding systems there will be 
no activationless region, since the diffusion effects will begin to come into play. 
An experimental observation of the activationless region of reaction seems to be 
possible in the case of a strongly non-adiabatic reaction (K < l), when in spite of the 
smallness of the activation energy, the reaction rate constant is still relatively not large 
(Jc << l/T&- An experimental investigation of barrierless transfers also presents 
certain difficulties, since the activation energies in this region are maximal and the 
corresponding rate constants small. Recently, however, barrierless transfers were 
detected and investigated in detail in electrochemical reactions of hydrogen-ion dis- 
charge.* In a quantum-mechanical calculation all proton levels, both the ground level 
and excited levels, were formally taken into account. The final result for the transfer 
probability is of the form 

gkE2 c 
2n mm’ 

K,+exp - (z) exp - (g). 138) 

Here W, is frequency of polarization fluctuations of the solvent, K,., the transrnis- 
sion coefficient, grnp the proton excitation energy, EFfrn the activation energy. 
Indices M and m’ indicate that proton passes from initial level &,p to final 
level c?$&. 

The analysis of formula (38) shows that generally the main contribution to the 
transfer probability is made only by some terms in the sum, corresponding to proton 
transfer between states m and 172’. These states depend on the value of AJ and hence 
on the region in which the corresponding value of a is to be found. In the normal 
region, where AJ m 0, a m +, the exponent in (38) can be written 

E, d-,~ - cF$~ (G’t - gmip>” --- 
4kT 2kT - 4E,kT ’ (39) 

It follows from (39) that the main contribution to the transfer probability in the normal 
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region is made by the transfer between unexcited states. In the barrierless region, 
where AJ M Es, a M 1, the index of the exponential in (38) is 

Es C?LP (G’f - gfnipY 
----- 

kT’ kT 4E,kT - 
(40) 

It follows from this expression that in the barrierless region, the transfer can occur 
from a small number of excited initial states to the ground final state. 

Similarly, in the activationless region, where a M 0, the transfer can be shown to 
occur from the ground initial state to a small number of excited final states, 

So far, examining the contribution of excited states to the transfer probability, 
we have not taken into consideration the transmission coefficient, the value of which 
depends essentially on the states between which the transfer occurs. 

The transmission coefficient K,,.,~,, corresponding to the transfer between proton 
excited vibrational levels, increases with increasing excitation energy of initial and 
final states owing to a greater overlapping of corresponding wave fuctions. 

Therefore, the total value of proton-transfer probability is determined by the 
COmpetitiOn betWeen Kmem and the value of the exponential, diminishing with in- 
creasing excitation energy over the whole range of a. Numerical calculations have 
shown, however, that with an allowance made for the transmission coefficient as 
well, excited states are of most importance only in the regions where 0: M 0 and 
o! w 1. 

Now we can compare the theoretical results obtained with some experimental 
data. We shall show, by way of illustration, for the case of a certain class of reactions 
that the theory expresses not only qualitatively, but also quantitatively, the relation- 
ship between the reaction rate constant and the reaction heat for a large series of 
reactants. 

In order to calculate the absolute value of the reaction rate constant, it is necessary 
to know the transmission coefficient and the activation energy. It is possible to 
calculate the transmission coefficient if we choose some reasonable form of proton 
potential energy in AH and BH molecules and pre-set the distance AR over which 
proton is transferred (see Fig. 4). In the present study the Morse potential was made 

FIG. 4. 

use of for concrete calculations. The Morse potential is determined by two parameters 
by the potential well depth D characterizing the energy of proton afinity for ions A- 
and B- in solution and by the characteristic vibration frequency wp. 

In the determination of the activation energy, the basic parameter is the solvent 
repolarization energy E,. 
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The value of Es can be estimated theoretically. But such an estimate is only a 
very rough approximation. Therefore, in the present paper the value of E, is taken 
from an analysis of experimental data. The calculation carried out above showed the 
change of GC from zero to unity as the function of AJ to be almost linear in the range 
AJ = ZE,. Thus, it is possible from the slope of the curves a = a(AJ) in the normal 
region to determine Es. 

In the present study theoretical results were compared with experimental data 
obtained by Eigen,’ who investigated the proton-transfer reactions between acetyl- 
acetone CHsCOOCHsCOCH, and various acceptors (the reaction under consideration 
is one of the steps of an acid-base catalysis). In our calculations we took the proton 
vibration frequency in the initial state (AH) to be equal to the frequency of the valence 
bond C-H in >C-H, (cu 2900 cm-l). The frequency of proton valency vibrations in 
the final state (BH) is taken to be equal to the frequency of stretching vibrations of the 
O-H bond. The range of variation of D for the compounds under consideration is 
7-8 eV. In our calculations we took the value of D to be 8 eV for all compounds. 

The values of w and D for acceptors were chosen the same for the sake of simplicity, 
but it should be noted that in the case of an adiabatic reaction, the rate constant is not 
susceptible to changes of w and D. AR was taken to be 0*75A . It was found from 
the slope of the experimental curve a(AJ) that Es = 1 eV. This value conforms reason- 
ably well with the value of E, = 2 eV, obtained in homogeneous electron-transfer 
reactions and in electrode reactions involving proton transfer. In electron-transfer 
reactions the repolarization energy is greater since electron is transferred through a 
larger distance. In the case of H,O+-ion discharge at the electrode, the larger & is due 
to the disappearance of solvent polarization caused by the hydroxonium ion. 

At the parameter values chosen, the theoretical log k/AJ curve calculated by 
means of an electronic computer proved to agree well with experimental data, 
Fig. 5. 

-5 I I, I f I 
-5 0 5 IO 

A log K 

FM. 5. 
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To study the dependence of the results on the kind of proton potential energy in 
reagents, a similar calculation was carried out assuming harmonic vibrations in AH 
and BH molecules. The curve thus obtained proved to coincide practicalIy with the 
curve calculated for the Morse potential, with the value of AR differing but little from 
that indicated above. 

In the previous section we showed that the present theory permits us to calculate 
both the pre-exponential and the activation energy, and thus to estimate the absolute 
value of the rate constant of the proton-transfer reaction. On this basis it is possible 
to elucidate the question how the rate of the reaction of type (1) will change if proton 
is substituted by one of its isotopes. The ratio of the rate constants of proton and its 
isotope transfer reactions KH/Kn(Tj characterizing the isotope effect contains very 
important information and therefore its calculation is of great interest for the study of 
the mechanism of chemical reactions. 

A proton exchange for one of hydrogen isotopes leads to a change in the positions 
of vibrational levels of hydrogen isotopes in the molecules AD, AT, BD, BT and 
hence to a change in the values of transmission coefficients and activation energies. 
In the theory of absolute reaction rates, a formula is generally used for the estimation 
of the magnitude of the isotope effect which takes account of zero energies of initial 
states when proton is exchanged for hydrogen isotopes, 

kE/kD =exp { EEo&EDo) . (41) 

It should be noted in using (41) that the vibration frequencies in the activated 
complex are assumed to be the same for proton and deuteron. Formula (41) imposes 
rather rigorous conditions on possible values of isotope effects for individual types of 
bonds and cannot account for the great variety of the isotope-effect values. In these 
cases other reasons are sometimes thought of, such as change of the vibration fre- 
quency of hydrogen isotopes in the activated state. However, according to the theory 
of absolute reaction rate, an activated complex is a “loose” system with small 
variations of vibration frequency, and what is more, our knowledge of these 
frequencies is rather uncertain. 

Also, as shown by Krishtalik,g it is impossible in principle by means of the equation 
of the absolute reaction rates theory to explain the values of the isotope separation 
factors in electrochemical reactions and their dependence on the electrode potential. 

On the basis of the theory developed in the present paper, it is possible to obtain 
a formula for the ratio of the proton-transfer rate constants, which in the normal 
region is 

k,/k, = $ exp OLcVA 
DH _ E B*“) - (EAOD - &O”) 

kT (42) 

Simple estimates in which account is taken of the fact that the zero energy values of 
proton and deuteron initial and final states are related approximately as the square 
root of the isotope mass ratio, show that the exponential factor in (42) gives no 
contribution to the isotope effect. Thus, the isotope effect is determined by the ratio 
of the transmission coefficients of transfer from ground initial to ground final state 
for proton and deuteron. The transmission coefficients, in their turn, are determined 
by overlapping integrals of the proton and deuteron wave-functions of the initial and 
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final states and depend on the distance AR, over which the proton jumps. The com- 
parison of experimental data on the isotope effect of proton transfer reaction from 
ethyl-a-methylacetonate to ions of chloro-substituted compounds of acetic acidlo 
and theory made it possible to determine the value of AR for the above reactions, 
O-65 A. In this case the calculations show that the proton transfer follows an 
adiabatic path, whereas the deuteron transfer follows a nonadiabatic one. 
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