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THEORY OF HYDROGEN-ION DISCHARGE ON METALS: 
CASE OF HIGH OVERVOLTAGES* 

R. R. DOGONADZE, A. M. KIJZNETSOV and V. G. LEVICH 
Institute for Electrochemistry, Academy of Sciences, Moscow, U.S.S.R. 

Abstract-A detailed quantum-mechanical theory for hydrogen discharge on metals showing high 
hydrogen overvoltage is given, for the case where the discharge reaction is the rate-determining step. 

R&un&-Theorie quanto-mecanique detaillee du processus de d&charge de l’ion hydrogene sur les 
mbtaux. Elle denote une surtension &levee dans de cas ob la reaction de decharge est Nape regulatrice. 

Zusammenfassung-Man entwickeh eine detaillierte quantenmechanische Theorie iiher die Wasser- 
stoffentladung an Metallen mit hoher Wasserstofftiherspannung fur den Fall, wo die Entladungs- 
reaktion den geschwindigkeitshestimmenden Schritt darstellt. 

ELECTRODE reactions are a special case of charge-transfer processes in a condensed 
system. At present there exists a quantum-mechanical and statistical theory of 
redox reactions in condensed phases involving electron-transfer. This theory has 
been extended to the case of electrode reactions .l-ls An essential assumption of 
the theory is that the rate-determining step of the charge-transfer elementary act 
should not involve the breaking or formation of any chemical bonds between the 
reagents. This narrows down considerably the class of electrode reactions to which 
the theory in question is applicable. In particular, it is impossible to consider the 
hydrogen-ion discharge reaction within its framework. 

The present paper gives a quantum-mechanical theory of hydrogen-ion discharge 
on metals showing high overvoltage. This case is considered only for definiteness: 
the theory can be directly extended to other proton-transfer processes in polar 
media. Moreover the availability of a theory of proton-transfer reactions may prove 
to be helpful in understanding the physical picture of other electrochemical processes 
and in the development of their theory. 

We shall consider hydrogen-ion discharge to be the rate-determining step,l” 

HaO+ + e+ Ha + H,O, 

and we shall assume the removal of adsorbed hydrogen atoms to proceed by the 
electrochemical mechanism 

Ha + H,Of+ e+H, + H20. 

1. MODEL OF THE SYSTEM 
In concrete quantum-mechanical calculations we shall make use of a definite 

model to describe the state of individual components of the total system consisting 
of proton, electron, solvent and electrode. 

1. Proton 
Both in the initial and final states, the proton forms strong enough chemical 

bonds with the water molecule and with the metal. Analysis of the experimental 
* Prepared for the 18th meeting of CITCE, Elmau, April 1967; manuscript received 23 August 

1967. 
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data shows that the frequencies of vibrations in these states are oi _N 5 x 1014 set-l, 
ma N 2 x 1014 s-l, corresponding to the motion of the proton along the H+-H,O 
or Me-H bonds. There exist also other kinds of vibrations in a real system (eg 
bending of the bonds). Taking these vibrations into consideration, as will appear, 
does not present any fundamental difficulties. The estimates show, however, that 
these vibrations do not influence the transition probability to any great extent. 
Taking them into consideration may result only in the appearance in the formula for 
the transition probability of a pre-exponential factor of the order of unity. The 
physical reason for this is that the proton transfer results in its equilibrium co- 
ordinate significantly changing only in the direction of the chemical bond. In the 
lateral direction the proton co-ordinates remain practically unchanged. Therefore, 
as a rule, the overlapping of the proton wave-functions characterizing its motion 
in the lateral direction is quite large and the corresponding integral of overlapping 
is close to unity. 

Owing to this peculiarity of the behaviour of the wave-functions, in calculating 
the transition probability of a proton located closest to the electrode, it is possible 
to make no allowance for the presence of other protons in the hydroxonium ion. 
At the frequencies given above the inequality 

Wi, Wa > y (W4.10’3 s-l) (1.1) 

is always valid. Its physical significance is that there is the greatest probability of the 
proton being in the ground vibrational state both in the initial and final states. This 
is very important for further treatment. 

2. Electron 

In accordance with common practice, in calculating the current, we shall make use 
of the one-electron approximation. The energy distribution function of the electrons 
(Fermi distribution) is of the form 

n(Ey)=(expp*] +1)-1. 
. 

U-2) 

The electron energy-level density I in the metal is a smooth function of ei. The 
regular character of I is quite evident, for example, in the quasi-free electron 
model, p M 2/lai - U,,l, U,, being the depth of the potential well in the metal or the 
edge of the band in a semiconductor. 

For simplicity, we shall consider the electron that holds the proton in the adsorbed 
state to be at the local level E~. This means that the number of adsorbed hydrogen 
atoms is small and no surface band is formed in the electron spectrum in the process 
of adsorbtion. 

3. Solvent 

A quantitative description of the solvent presents great difficulties, because there 
is no physical model available to describe equally well the behaviour of the water 
molecules lying closest to the ion (the so-called inner sphere) and that of more remote 
solvent molecules (the outer sphere). 
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The simplest case is when the interaction of the ion with the more remote solvent 
molecules is of essential importance. Such a situation may arise in the presence of a 
strong bond between the molecules of the inner sphere and the ion. Then, the molecules 
of the inner sphere can be combined with the heavy residue of the discharging ion. 
Such an approach was first suggested for the treatment of electron-transfer reactions 
by Marcus,la and is known as the rigid conducting sphere model. It has been 
successfully used in the development of the theory of homogeneous and heterogeneous 
redox reactions involving no breaking of chemical bonds. If the interaction with the 
nearest molecules of the medium is not negligible, a discrete description should be 
used for this part of the solvent. At present it is impossible to obtain quantitative 
results with a discrete model. The difficulties arising are well known from the 
attempts to develop the theory of liquids. 

Therefore, we shall adopt the following model of the solvent: the molecules of the 
inner sphere are considered as dipoles performing small vibrations; the molecules 
of the outer sphere are described by a continuous model. In the case of a model of 
harmonically vibrating oscillators, it is possible to use a quantum-mechanical descrip- 
tion. With our model, all the liquid can be described as a system of oscillators 
vibrating harmonically with different frequencies. The Hamiltonian of the system 
of oscillators is of the form 

(1.3) 

where qk and wk are the normal co-ordinates and the frequencies of oscillators, 
respectively. Just as in the case of redox reactions involving electron transfer, we 
shall assume that the interaction of the discharging particle with the librations of the 
dipoles of the medium (ie with the vibrations of the water molecules as a whole). 
Taking into consideration the high frequency vibrations of the inner sphere (if such 
vibrations were to exist) would not introduce any qualitative changes into the general 
picture of the phenomenon (nor would making an allowance for the intramolecular 
vibrations of the H30+ ion, in addition to the proton vibrations along the breaking 
bond). If the fluctuations of macroscopic polarization P(r, t) in time are also con- 
sidered to be due to the libration of the dipoles of the medium, all the normal fre- 
quencies to this approximation can be regarded as being the same, ok M w,,. In 
order of magnitude, w. E=V loll s-l. As shown by calculation, the presence of a small 
dispersion of the vibration frequencies of the dipoles of the medium, 

wk = w. + AIR,, (1.4) 

does not introduce any significant correction into the quantitative picture of the 
discharge process, since for the librations the following inequality can be always 
considered to be valid, 

kT 
Wk M w. w 1011 s-l < - % 4 x 1013 s-l 

fi (1.5) 

As will be shown later, condition (1.5) permits us to ignore the quantum effects in 
the treatment of the solvent. 
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4. ion disiribution 

Finding the space distribution of ions in the solution near the electrode (in the 
double layer) is a complex statistical problem. This problem has been solved only 
in the simplest cases. 17-18 Below we shall assume the H,O+ ion discharge to occur 
directly from the outer Helmholtz plane. Therefore, instead of the space distribution 
of the discharging ions, it is necessary to know only their concentration at the surface 
C,‘. This assumption is physically justified since the transition probability decreases 
sharply with increasing distance from the electrode. 

Actually, the ion distribution of an indifferent electrolyte affects only the potential 
distribution in the solution, ie it influences only the value of the initial energy of the 
system and the value of Cs. As will be evident below, the statistical problem can be 
separated from the quantum-mechanical calculation and the current can be formally 
calculated and presented in closed form. However, for definiteness, we shall consider 
the concentration of the indifferent electrolyte to be large enough and the total 
potential drop to occur in the inner region of the double layer. In that case, the value 
of C, will be close to that of the bulk concentration and the electrostatic energy of the 
discharging ion will be zero. It should be emphasized that in some cases our assump- 
tions, in particular, the model of harmonic vibrations of the water dipoles, will 
be insufficiently accurate. Thus, the deviation from the harmonic approximation 
can be due to a partial dielectric saturation of the inner sphere or to effects associated 
with the structure of liquid water. In principle, making an allowance for the deviation 
from harmonic approximation can lead to a quantitative change in the parameters 
of the theory. Nevertheless, to obtain estimates we shall make use of the dielectric 
continuum model. Comparison of theory with experimental data shows this model 
to give good enough quantitative results. As regards the qualitative results, it will 
be seen later that actually they account almost for all the experimental data available 
at present. 

2. TERMS OF THE SYSTEM 

Since hydroxonium-ion discharge results in a proton transfer from the water 
molecule contained in the hydroxonium ion to the electrode, the complete quantum- 
mechanical Hamiltonian of the system can be conveniently written as 

H(xw, xm, R, 4) = Hi”(xwt xrn, R, 4) + Vpm(xm, 3) 

= ffa”(xm, xw, R, q) + J’-,&w, R), 

(2.1) 

where xw, .x~ , R are the co-ordinates of the electrons binding the proton in the 
hydroxonium ion, of the electron forming with the proton an adsorbed state and of 
the proton, respectively; q is a set of normal co-ordinates of the solvent {qk}; VP, 
and VP, are the energies of the interaction of the proton with the water molecule in the 
hydroxonium ion and with the electrode, respectively. Hi” and Ha0 are the unper- 
turbed values of the Hamiltonian of the system in the initial and final states of the 
system, respectively. 

The electron terms of the initial and final states should be obtained using the 
adiabatic approximation. We shall consider the electrons to be the fast sub-system 
and the proton and the solvent the slow sub-system. The physical significance of this 
approximation is that in determining the wave-function of the electron sub-system 
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it is possible to ignore the kinetic energy of the slow sub-system, the proton and the 
solvent, owing to the slowness of their motion. In other words, the electron state 
can be determined accurately enough if the proton and the solvent are considered to be 
almost at rest. Naturally, the electron energy in the initial EI(R, q) and final E, (R, q) 
states depend on the co-ordinates of the slow sub-system as on parameters. 

The use of the adiabatic approximation for the slow sub-system means that the 
proton and the solvent interact with a cloud of fast moving electron charge rather 
than with a point electron. In this case +(R, q) and E~(R, q) act as the potential 
energy of interaction between the heavy particles and the electron cloud. 

In an adiabatic approximation, the wave-function of the total system in the 
initial and final states can be represented as 

Y&(x, R, q) = Yr,a(x)%a(R, q), (2.2) 

whereYr,,(x) are the wave-functions of the electrons and O,,,(R, q) the wave-function 
of the proton and the solvent, which are determined from 

h2 a2 --_-_ ’ hw,; & + U&JR, q)) &JR, q) = E&f-&@, q) 2MaR2 2 
(2.3) 

Here Mis the proton mass and, U&(R, q) incorporates both oa(R, q) and the energy 
of direct interaction between the heavy particles. It is evident from (2.3) that the 
quantities lJ&(R, q) act as complete potential energy for the slow sub-system; 
they are called electron terms. 

In addition to the electron terms, the electron-proton terms can be introduced, 
owing to the existence of the relationship between the proton and polarization 
frequencies, 

Oi,% >QJ. (2.4) 

When condition (2.4) is fulfilled, it is possible to use adiabatic perturbation theory, 
assuming the proton to be the fast sub-system and the solvent the slow one. Thus 
a complete physical picture is based on the use of a double adiabatic approximation 
(1) the electron is considered as being fast compared to the proton and the solvent, 
(2) the proton is considered fast compared to the solvent. 

In the double adiabatic approximation, the wave-functions of the system in the 
initial and final states can be written 

Y&(x, R, q) = Yi,s(x)Xf.a(Rt q)+i.a(q) 

where Y and x are the wave-functions of the electrons and the proton. 
The wave-functions of the solvent 4 are determined from 

(2.5) 

where U;; is the potential energy of the solvent, ie the electron-proton term. 
By expanding the electron term of the initial state in power series in terms of small 

deviations from the equilibriumvalues ofthe co-ordinates of the proton and the solvent, 
we obtain 

uf” = Jf” + +hw, z Qk2 + &hWi62 -t 1 YkQktk, 

k 
(2.7) 

4 
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where 5 = ~/Mco$?(R - R,,i) is the deviation of the dimensionless co-ordinate of 
the proton from the equilibrium value corresponding to the initial state; Qk = qk - 
qko is the deviation of the normal co-ordinates of the solvent from the equilibrium 
values. The minimal value of the potential energy in the initial state can be written 

Jt = EI - ep, + E,i, (2.8) 

where v is the potential of the metal and I&r the minimal potential energy of the proton 
in the hydrated H,O+ ion, comprising both the electrostatic energy of hydration and 
the chemical binding energy. 

The surface described by (2.7) is a paraboloid in (IV + 1) dimensional space 
(N is the number of oscillators). The presence of the last term in (2.7), which 
corresponds to the interaction between the proton vibrations and the water oscillators, 
leads to the turning of the main axes of the paraboloid about the axes of the co- 
ordinates in the (N + 1) dimensional space. The angle of rotation is determined by 

(2.9) 

Although further calculations can be carried out taking into consideration the 
last term in (2.7) it is possible to simplify the formulae by taking advantage of 
the fact that the frequency of vibrations of the proton differs greatly from that of the 
solvent. An accurate calculation shows that the parameter determining the value 
of the interaction of these vibrations is 

16&k2 
k w lfj!?!?. 

j(P, - Po”)2 du 

h2(CQ - oo”) mi sP,(P, - PO”) du’ 
(2.10) 

The significance of the quantities PO” and PO can be explained as follows. Let us 
denote by ROio the co-ordinate of the equilibrium position of the proton in the H30+ 
ion in the gaseous phase. When the H,O+ ion is placed into the solvent, its equilibrium 
position alters due to polarization. Let us denote the new value of the co-ordinate 
of the equilibrium point by Roi. The quantities PO” and PO are equal to the equi- 
librium values of polarization due to the HaOf ion, in which the equilibrium co- 
ordinate of the proton is R,,” and R,, respectively. The estimation of the parameter 
(2.10) with a dielectric continuum approximation gives 

16Tz\yk2 
k 

hyoi2 - oo2) 

wo I&i - R’MI < 1 WI--’ , 
cc)i 70 

(2.11) 

where 7. is the radius of the H30+ ion. 
The inequality (2.11) shows that the last term in (2.7) can be dropped. Finally 

Ur” can be written as 

vi” = Jr” + ; ho, ; (qk - qko)’ + y (R - &i)2. 

Similarly, for the term of the final state Use we have 

(2.12) 

(i.‘=Ja,e+;hWo;qtc2+ F (R - R,,a)2, (2.13) 
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where Jae is the minimal potential energy corresponding to the adsorbed state of the 
hydrogen atom. Roa is the equilibrium coordinate of the proton in the adsorbed 
state. 

The theoretical analysis of our problem can be greatly simplified if the system of 
coordinates is turned in (N + 1) dimensional space {qk) in such a way that in the 
new coordinates, qk, the minimum of the initial state term, lies on one of the new 
axes 17. Then the proton transfer will correspond to the change in the equilibrium 
co-ordinate of only one oscillator .2 . Finally the electron terms of the system can be 
written in the form 

r1d2 + iMw2(R - R,,J2, (2.14) 

BMwa2(R - R,d2, (2.15) 

Thus, in the variables q and R the electron terms prove to be two-dimensional 
(Fig. 1). This greatly simplifies the graphic analysis of the transition. 

U’k 

(0,&I ? 

(?,,ffOi) 

FIG. 1 

where 

The electron-proton terms are obtained in a similar way, 

u$: = Jf, + !&dv - d2, 
U.$ = J,,, -I- j$q,q2, 

Jf,, = Jf + fiwi(n + 3), 

J,,, = Jae + h&z’ + 4). 

3. TRANSITION PROBABILITY 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The solutions of Schrodinger’s equations of unperturbed Hamiltonians Hi” 
and Ha0 have been considered above. The dropped terms V,, and V,, cause 
transitions between the unperturbed states to occur (proton discharge and hydrogen 
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ionization respectively). According to the general principles of quantum mechanics, 
the transition probability per unit time is determined by 

Wi, = g Av 2 1 (\k”B’I V,,, lY,“)12 d(Ei” - Ea”), (3.1) 

where Av is the averaging over initial states of the system, summation being made over 
all the final states. This formula is a general one and describes any possible reaction 
mechanisms. Concrete results depend on the manner of the choice of the wave func- 
tions of the initial and final states as well as on the approximations in further calcula- 
tions. 

First of all, using the general formula (3.1) it is possible to obtain the results of 
Horiuti and Polanyi’s theory. l@ According to the physical ideas of this theory, the 
solvent has no effect on the transition and its state remains unchanged, ie the over- 
lapping of the wave-functions of the solvent is equal to unity, (&&) = 6,,,,. 
Therefore, in (3.1) it is necessary to calculate the exchange integral connected with 
the electron wave-functions and the overlappings of the proton wave-functions. 
The first quantity corresponds physically to the transmission coefficient and in 
Horiutu and Polanyi’s theory should be substituted for unity. Thus, in Horiuti and 
Polanyi’s approximation, the transition probability should be written as 

via = Cr - Av, 1 I (xn, I xn>12 d(Ei” - &,“). 
n’ 

With a harmonic approximation, ie substituting the oscillator wave functions for 
x, this expression can be accurately calculated and is equal to 

!-via = Cgexp [&-zcoth$$] .laJihw, (zcosech$$) , (3.2) 

where AJ is the reaction heat, ED the proton state reorganization energy, wp the 
proton frequency and&(z) the Bessel function. In order to obtain the result of Horiuti 
and Polanyi, who used the activated complex method, it is necessary in (3.2) to 
assume tiwp < kT. Then we obtain the activation formula 

where Ea is the activation energy (Fig. 2). In actual fact, a reverse relation to that 

ho, < kT, (3.3) 

I 

R 

FIG. 2 
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used by Horiuti and Polanyi is valid, viz Acop < kT. In this case (3.2) gives 

wia=Cpexp hw, Q kT. (3.4) 

(3.4) has a quite obvious physical sense and shows that in the case of the higher 
vibrational levels being weakly excited (Ao, > kT) a quantum sub-barrier transition 
takes place instead of the classical one, which is described by (3.3) (see Fig. 2). Thus, 
assuming the solvent to take no part in the discharge process, we inevitably arrive 
at formula (3.4), which can be easily seen to be in contradiction with the experimental 
data. In fact, according to (3.4) the activation energy should be equal to the reaction 
heat, ie the transfer coefficient a in Briinsted equation should be unity. Thus, it 
follows necessarily from the analysis of Horiuti and Polanyi’s theory that the re-organi- 
zation of the solvent in the discharge process should be taken into consideration. 

We have dwelt at some length on the analysis of Horiuti and Polanyi’s theory for 
the reason that the main physical ideas of this theory have been used in one form or 
another in many later studies.2e24 

It follows from the above analysis that, just as in the case of redox reactions, 
the solvent plays an essential role in the process of hydrogen-ion discharge. Therefore, 
in calculations it is important to separate the overlapping of the solvent wave- 
functions. If an adiabatic approximation is used only for the electron, (2.2) should 
be used as the wave-function. In this case, the solvent wave-function can be separated 
using a harmonic approximation for the solvent and proton wave-functions. Then, 
as has been shown above, owing to a large difference in the frequencies, the Hamil- 
tonian takes the form of a sum of non-interacting oscillators and the wave-function 
of the slow sub-system can be represented as Xi,a(R)&,(v). If, however, the harmonic 
approximation for the proton is not accurate enough, a double adiabatic approxima- 
tion can be used, which is applicable, provided the condition AE > fro, is fulfilled 
(where AE is the distance between the proton levels). Naturally, the calculations 
made by the two methods give the same result in a harmonic approximation. 

Below will be given the results obtained using a double adiabatic approximation, 
since they are more general. The transition probability per unit time from the initial 
(the electron is at the level or, the proton in the H,O+ ion at the level E,) to the final 
states (the electron is at the local level &a, the proton in the adsorbed state at the level 
E,,) is of the form 

(3.5) 

where averaging and summation are made over the solvent states. Using the results 
obtained by us earlier for redox reactions, we shall write 

Wnn’(Ef) = q&n, - - ri. exp - (3.6) 

Formally this expression is of the same form as the corresponding formula for the 
electron-transfer probability obtained for redox reactions. However, essentially, 
there are considerable differences between these formulae, viz the transmission 
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coefficient in (3.6) depends not only on the electron wave-functions, but also on the 
proton wave-functions 

K,,,, = l~%,,(ef)l~/&“, (nonadiab) (3.7) 

K,,s = 1. (adiab) (3.8) 

The conditions for non-adiabaticity and adiabaticity are 

and (IL~I > L,) (3.9) 

respectively. 
The exchange integral L,,,. can be calculated if the electron-proton wave-functions 

are known, 
L nn’ = J~a*(x)~n,*(R)I/pm(x, R)w(xMR) d3x dR. (3.10) 

The usual adiabatic approximation has been used here (Condon approximation), 
according to which the wave-functions of the fast sub-system depend on q slightly 
and can be taken at the point corresponding to the activated state of the solvent. 

The exchange integral (3.10) is determined by the overlapping both of the electron 
and the proton wave-functions. It should be noted that in the case of hydrogen-ion 
discharge, the smallness of the exchange integral is not due to a weak overlapping 
of the electron wave-function as in redox reactions, but is caused by a weak over- 
lapping of the proton wave-functions. Since the proton wave-functions change more 
sharply than the other functions under the integral, the latter can be taken at an 
intermediate point R*, in which the overlapping of the proton functions is maximal. 
Finally L,,,,, can be written as 

L lln = Le . s,,., (3.11) 
where 

Le = JYs*(x, R*, q*)V,m(x, R*)Y?i(x, R*, q*) d3X, (3.12) 

%z,, = jxn,*(R, q*)xn(R, q*) dR. (3.13) 

The transition probability with an allowance made for any initial and final states 
is of the form 

W&r) = Av, z: Wn&r). (3.14) 
n’ 

As has been shown in the investigations on the theory of redox reactions,lO the 
transition of the solvent from the initial to the final state follows the classical path 
(through the intersection point of the electron terms). Naturally, the situation is the 
same in the case of a proton discharge the only difference being that here the classical 
transition occurs on the electron-proton terms. The proton transition must be assumed 
to occur from a given level n to a definite level rt’. The transition probability obtained 
above permits us to interpret the reaction path by means of the electron terms. 
For definiteness, the transition of the system at n = n’ = 0 is shown in Fig. 3. It is 
clear from the figure that at first activation of the solvent occurs at a fixed position of 
the proton. At the point q*, at fixed co-ordinates of the solvent, occurs a quantum 
proton transition. 

It should be stressed that in considering a quantum proton transition at the point 
q*, it is impossible to calculate the transition probability using the Gamov formula, 
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FIG. 3 

FIG. 4 

x 

FIG. 5 

which gives a transition probability in a given potential field (Fig. 4). Here the potential 
field is determined by all the particles in the system, so that the removal of one of them 
(eg an cc-particle from the heavy neucleus)practically does notaffect thefield configura- 
tion. The energy of a tunnelling particle does not change with time. In the tunnel 
transitions occurring in chemical reactions of interest to us, which usually involve 
a transition from one term to another, the situation is quite different. 

For simplicity we shall explain this by considering as an example the case of the 
tunnel transition of one particle, eg an electron, occurring in a redox reaction. This 
must be described in terms of the electron potential energy U,(X) as a function of its 
co-ordinate x (Fig. 5). 

The electron potential energy depends on the fluctuating polarization P(r, t) of 
the surrounding solvent, ie it is time-dependent. Fig. 5 shows the electron potential 
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energies at two moments of time (solid and dashed curves). The total electron energy 
also proves to be time-dependent. At a random moment of time the electron energies 
in the left hand and right hand wells do not coincide and tunnelling is impossible. 

The possibility of tunnelling arises at the moment of time t* when the energies 
E(P*) become equal. This polarization value P* corresponds to the intersexion point 
of the electron terms. Evidently, the transition probability depends not only on the 
probability of attaining the state P *, but also on the velocity of passing through this 
state P* by the system. In the limiting case of infinitely slow passing (P* -+ 0) of 
the polarization value P *, the transition probability is + (the so-called adiabatic 
transition). In the reverse limiting case, the transition probability tends to zero. In 
an intermediate case of a finite velocity of passing, the transition probability is 
given by Landau-Zener formula. To be sure, all what has just been said is valid 
for the processes of a tunnel transition involving the participation of two particles: 
proton and electron, in the presence of a solvent. 

The transitions at n and IZ’ other than zero can be interpreted in a similar way. 
In this case the position of the activation point q* depends on IZ and n’. The activa- 
tion point q* is determined by the condition that for the terms Ufe(R, q*) and 
Uae(R, q*) the energies En and En, should be equal. Then first, proton excitation to 
the level En will occur (the probability of this process is taken into consideration in the 
averaging over the initial states in the formula (3.14)), which can be followed by a 
quantum proton transfer. 

The above interpretation of the transition probabilities is based on the assump- 
tion that the quantum proton states n and n’ are fixed. We are interested, however, 
in the total transition probability. Therefore, formula (3.14) for the total transition 
probability should be considered. Since for calculating the sum (3.14) it is necessary 
to know the explicit forms of the quantities K,,,,, Jf, and J,,, we shall give below 
the quantitative results for a harmonic approximation. Most of the results are 
qualitatively valid in the general case as well, when the approximation of small 
proton and solvent vibrations is not sufficiently accurate. 

In a harmonic approximation, the sum over n and II’ in (3.14) can be calculated 
accurately. Then the total transition probability is 

Wia = lL”12/L,“. 2 a y 

*=-cc 
Zm(zp) . exp (- zp ch 2; - s) 

x exp 
(Jae - Ji” - mhw, + Es)2 

- 
4EskT I 

, (3.15) 

where zp = Ep/hop cosech iio,/2kT, and Jm(zP) is the Bessel function of the 
imaginary argument; it being assumed to simplify the formulae that oi FV co8 M op. 

(3.15) can be simplified for a number of limiting cases. It should be noted that 
not all those cases can be realized in a proton discharge. Their consideration, however, 
can be of interest for the investigation of other electrode reactions. 

We shall analyse the limiting cases for all the possible transition mechanisms in 
electrode reactions in a harmonic approximation. It is to be hoped that this approxi- 
mation could be used for a qualitative description of all transitions at electrodes. 

Only one of the limiting cases of (3.15) is for a proton-discharge process. 
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1. Let us consider a high-temperature approximation for the proton 

Ao, < kT, z,> 1. (3.16) 

Then for Bessel functions it is necessary to take their asymptotic representation and 
the expression (3.15) will assume the simple form 

Wia = ILe12/Lc2 .z . exp 
( 
- (Jae &~~EEs)k+TE”)’ 

6 P 1 
, (3.17) 

where Ep is the re-organization energy of the proton state. If the transition probability 
is interpreted by means of electron terms, (3.17) corresponds to a classical transition, 
the reaction path passing through the saddle point of the intersection line of the terms, 
as is evident from the activation energy (Fig. 1). This case is not realized for proton 
transitions, but is possible, however, for heavy particle transfers. 

2. When 
ttap < kT, ZP<l1, (3.18) 

ie in the case of a high-temperature approximation and a narrow barrier, an expression 
is obtained for the transition probability which corresponds to the proton transfer 
following the one-phonon mechanism (a weak interaction with the medium). In this 
case the formula is of a non-activation (with respect to temperature) character. 

3. Let us consider a low-temperature approximation for the proton and the case 
of a narrow barrier, 

fiwp > kT, zpg 1. (3.19) 

In this case the expression is for the transition probability that corresponds to the 
condition that, in the sum (3.14) over n and n’, only one term with n = n’ = 0 should 
be retained. The corresponding transition path as expressed by means of electron 
terms is shown in Figs. 1 and 3. This result is most evident from (3.15) at Jae = Jr” = 
0. In this case the sum over m is of the form 

(3.20) 

It is clear from (3.20) that the largest term in the sum is the term with m = 0, which 
corresponds to n = n’ = 0. It is just this situation which is mostly present in the case 
of a proton discharge. At Jae # Jre a small number of excited levels can contribute 
to the probability, the proton transition being of a sub-barrier nature in all cases. 

4. Finally, when 
ttmp > kT, ZP> 1, (wide barrier) (3.21) 

the transition occurs from a group of intermediate levels. The expressions obtained 
are as before of the form w = const . exp (-Ea/kT), but it is evident from the expres- 
sion for the activation energy Ea that in this case the transition does not correspond 
to the classical path through the saddle point. The proton transition is again sub- 
barrier and in the simple case, when J ae = Jfe, for the activation energy determined by 

d In w 

Ea = - d (l/kT) ’ 

E,=%+zexp -$-f$ . 
( 1 

(3.22) 
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Thus, for the reaction to follow the classical path it is necessary for both the 
conditions (3.17) to be fulfilled. This conclusion, as well as the results obtained for 
the cases l-3, were substantiated by calculation made for non-parabolic terms as 
well. Thus the qualitative results obtained for the limiting cases l-3 remain valid 
practically for any arbitrary terms. The result obtained-for case 
specific features of a harmonic approximation. In actual practice 
wide barriers are more complicated and will not be considered here. 

4 shows some 
processes with 

4. CURRENT DENSITY 

Knowing the transition probability it is possible to determine the cathodic cd by 
means of the general formula 

i = 2eCsSwia(&r)n(&r)p(&f) d&r, (4.1) 

where Cs is the surface concentration of hydroxonium ions (on the outer side of the 
double layer). n(ar) is the Fermi distribution, 

n(.sr)=(exp[y] +lr, (1.2) 

P(EC) the electron-level density in the metal and Wan- the H,O+-ion discharge 
probability per unit time. The factor 2 is introduced since under steady state condi- 
tions there is one act of electrochemical desorbtion per one act of the HsO+ discharge. 

In accordance with the general formula for the transition probability, all possible 
excited states of the proton both in the initial and the final states should be taken into 
consideration, 

i = Av, 2 i(n, n’), (4.2) 
1b’ 

where i(n, n’) is the current calculated assuming that in the initial state the proton is at 
the level E,,, and in the final state at E,,. In the harmonic approximation, 

En = hmi(n + g), E,, = ho&’ + $), (4.3) 

where the quantum numbers n, n’ = 0, 1, 2, . . . . First we shall calculate i(n, n’), 
and then find the expression for the mean current i. 

Using the formula for the transition probability and the Fermi distribution, we 
write i(n, n’) as 

i(n, n’) = 2ecsp* Jf!!J . 
27r 

4d) s 
where 

e&, = eF + Es + (J,,. - JFno) - eq 

(4.4) 

(4.5) 

In this case we consider the density of the levels to be a smooth function of .sr and 
therefore take it out of the integration sign. It is convenient to calculate this integral 
by the Laplace method (ie by the steepest descent method for the function of a real 
variable). For this purpose we equate to zero the derivative of the index of the 
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exponent of the whole expression under the integral, 

&- In n(.sr) - ET = 0. 
f ( 1 

(4.6) 

The quantity 
d Ea 

X(&I) = - d = 
d EB 

d (Jan, - Jf,) 
(4.7) 

is readily seen to be the analogue of the transfer coefficient in the Brijnsted equation 
for electrode reactions. These quantities are not identical since the Bronsted equation 
relates the changes in the process activation energy to that in the reaction heat, which 
is a thermodynamic quantity. In our case however, the quantity (J,,, - Jr,) has 
different values for electrons at different levels er and has no thermodynamic signi- 
ficance. It will be shown below that for the electrochemical process the Bronsted 
equation can be generalized as 

a* = d Ea 

d (J,,, - Jf,> et’s* ’ 
(4.8) 

where E* corresponds to the electron level at which the expression under the integral 
for the current has a maximum. In other words, E* is the energy level from which the 
actual transfer of the electron participating in the electrode reaction is realized. 
E*, as pointed out above, is found from (4.6), which can be re-written 

44 = 1 - a(.$ (4.9) 

Jwc - Jet” 
2E 

8 + 2E, 
“+Z!$?. 

8 
(4.10) 

If the values of the parameters Es and (Jan, - Jf,“) are known, the solution of this 
equation, E*, can be found numerically. However we now give a method for the 
solution of this transcendental equation. We shall consider three regions of over- 
voltage 

1. Low overvoltage 

e?l < (J,,,< - Jf,,“) - Es. (4.11) 

It is clear from Fig. 6 that the straight line, for which the corresponding equation 
coincides with the right hand side of (4.10) intersects the function I at such value 
of &r* that n* = KZ(Q*) < 1. From (4.10) it is easy to find er*, n*, a* and Ea, 

El * M EB - Es + (J,,p - Jfn,‘> - ev, (4.12) 

n* w exp 
1 
“-V.gJ~~‘)_exp(~~, (4.13) 

Ea - Es, 
a* m 1 - n*. 

(4.14) 

(4.15) 

The value of the activation energy thus found corresponds to the arrangement of the 
terms shown in Fig. 7, ie in this region of overvoltage the transition process is of a 
barrierless nature. For the current we have 

i(n, n’) = 2ecsp*u&n, n’) (F)“‘exp (Jm’&I”“‘) exp (s) . (4.16) 
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FIG. 6 

qoi %.’ 4” 

FIG. 7 

4 

In the region of barrierless transitions the adsorption bond between hydrogen 
and the electrode is realized by an electron which before the transition had been 
strongly excited state (&r* - &p > kT). Since the number of these electrons is very 
small (n* Q l), the current is small too. The slope of the polarization curve in this 
region in semi-logarithmic scale is 1, 

d In i(n, n’) 
W:*Wl (4.17) 

2. “Normal” overvoltage 

leq - (Jan, - Jfn”)l -=c Es. (4.18) 

In this region the intersection takes place near the Fermi level and it can be 
readily shown that 

2kT 
E* w .Q + E (J,,, - Jf,t” - eq) M cF, 

9 
(4.19) 

ES 
Ea M - 

4+ 
J,,* - Jfn” - eq Es 

2 
W--, 

4 

a* _ 1 + Jan* - Jf,” 1 
-2 2Es 

-__M-_. el7 
2E, 2 

(4.20) 

(4.21) 

(4.22) 
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FIG. 8 

In this region the activation energy corresponds to the arrangement of the terms shown 
in Fig. 8. Accordingly, the current is of the form 

Jan* - Jr," 
2kT 

(4.23) 

We see that the transfer coefficient a* is close to the value 9. The exact value a* = 4 

is obtained at er7,,2 = J,,. - Jfn”. However at large enough Es, the transfer coeffi- 
cient a* is equal to Q in a considerable region of overvoltages. As we have emphasized 
before, the theory is based on the assumption that the re-organization energy is 
large, a quantity of the order of several eV. 

In this region all the electrons participating in the reaction can be considered to 
have the energy which is very close to the Fermi level. 

In the normal region the slope of the polarization curve in a semi-logarithmic 
scale is close to Q in the range of overvoltage indicated. 

In this region, as well as in the barrierless region, the value of a* determined by 
means of (4.8) coincides with the determination of CC as 

d In i(n, n’) 
cI= % a* 

der] 
kT 

(4.24) 

It should be noted that the theory provides the existence of (4.24) to a good approxima- 
tion at arbitrary overvoltage values (in the absence of concentration effects). 

Since in the metal the number of electrons near the Fermi level is large and the 
activation energy Ea four times as small as in the barrierless region, the current in 
the normal region is relatively large. 

3. High overvoltage 

eq > Jan, - JFno -t Es. (4.25) 
In this region 

E* M Ed + Es + J,,) - JFnO - eq, (4.26) 

n*ml -ex P 
Eg i- J,,. - J,,” - eq 

kT I 

w 1 

, (4.27) 

Ea w 0, 

a* M 1 - n* M 0. 

(4.28) 

(4.29) 
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FIG. 9 

The activation energy, which is zero, corresponds to the arrangement of the 
terms shown in Fig. 9. Since EB N - 0 at high enough overvoltage the discharge 
process must be of an activationless nature. Then the current is equal to 

i(n, fl’) = 2ecgp*moK(n, n’) (4.30) 

Since in this region of overvoltage the discharge involves the participation of the 
electrons from practically all the occupied energy levels, (n* M I), ie from the levels 
located below the Fermi level (a* < Ed), and moreover the activation energy of the 
transition is zero, the current has a constant and very large value. This condition 
obviously offers great experimental difficulties in the way of the detection of 
activationless transitions. 

The expressions for the current in three different regions of overvoltage given above 
can be combined into one formula in which the overvoltage in the explicit form is 
substituted by the transfer coefficient a*, which depends on 7, 

i(n, n’) = 
2ecsp*o,K(n, n’) kTEs 

( 1+g 1 ( > l/2 * r 

“’ . (1 - a*) exp 

a*(1 -a*) 

(- (a*)%$) . 

The dependence of a* upon 11 can be found with good accuracy from 

Jan, - Jf,,” - Es - e y 
- 

kT 

(4.31) 

a* = 1 Jan, - Jf,” - ey . 

2E ’ 
Jan* - JFno - Es < eq < J,,, - Jf,” f Es; 

8 

exP 
J,,, - Jf,” + Es - ev . 

kT I 
> er7 > J,,,, - Jf,,” -I- Es. 

(4.32) 



Theory of hydrogen-ion discharge on metals: case of high overvoltages 1043 

ln i 

-- 

1 

7 

FIG. 10 

Fig. 10 shows the polarization curve in a semi-logarithmic plot for Es = 2 eV. 
The parameters contained in the theory-the pre-exponential factor and (JBAI - 
Jfn”) are not defined concretely since, without changing shape, they can shift the 
curve only along the abcissa and ordinate axes. 

According to the formula (4.2) the total cathodic current is 

e, 4 
i=C-. io(q - & + En) exp 

n,n, Ko 
(-P) , (4.33) 

where i. and Ho are the current and the transmission coefficient calculated for the 
case when the proton passes from the non-excited initial state to the non-excited 
final state. 

Strictly speaking, the measured current is given by (4.33), rather than by the 
expressions presented earlier. However, if the current is approximately 
as 

i- 2 ~(n, n’) exp {-a(E,, - E,) - (1 - a)(E, - E,)}/kT, (4.34) 

represented 

by a simple analysis we can draw the following conclusions for the region of normal 
overvoltages. The main contribution to the total current is made by the transition 
from the ground initial state to the zero level of the final state. 

In the regions of low and high overvoltage, the situation may be somewhat 
different. At low overvoltages a M 1 and excited initial states can contribute to the 
current. On the contrary, at high overvoltage, when a M,O the transitions to the 
final excited states can be realized. 

It should be stressed, however, that the above effect may change thepre-exponential 
factor, but cannot alter the qualitative nature of the expression for the current/ 
overvoltage characteristic. 

A more detailed analysis can be carried out with the harmonic approximation. 
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