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The Motion of Solid and Liquid Metallic Bodies
in Solutions of Electrolytes.

IX. Moticn in the field of gravity
By A. Frumkin and B. Levich
1. Falling drops

In the present paper we shall consider the electrical phenomena
which arise when drops of a metal move through solutions of electro-
lytes in the field of gravity.

The fall of drops in aliquid medium was investigated by H a d a-
mard?! and Smoluchowski 2 They showed that for
small Reynolds numbers a drop falls without changing its spherical
shape, the motion of the liquid within it having the character, in
cross section, of two eddies.

The velocity of fall of the drop is given by the formula:

2 (p—¢)ag(ntw s
U=3, (—2);7(,1—“) (1)
The notations are the same as in Part I1°.

We see from (1) that the velocity of fall of a liquid drop is greater
than that of a solid sphere, the latter being given by the well-known
Stokes formula:

U= _2_ () Q‘li (r))

4

In the case of mercury drops in water the difference between the
two velocities should be about 159.

t1Hadamard,C.R., 152,1735 (1911).
2 Smoluchowsk i, Proc. Math. Congress, Cambridge, 1912, p.192.
3 A,Frumkin and B. L e vich, Acta Phys. Chim., 20, 769(1945).



194 A. Frumkin and B. Levich

Let us now consider the fall of a drop of mercury in an electrolyte
solution. It is clear that the motion of the liquid at the mercury-
solution interface drags along the outer ions of the double layer, thus
giving rise to a convection current over the surface of the drop. The
ions will be carried to the rear end of the drop and as a result of their
accumulation an electric field will be set up.

This field should, evidently, send the ions back over the surface
of the particle. On the other hand, the potential difference which
has arisen between the fore and rear ends of the drop can be evened
out by currents flowing through the bulk of the solution along the
lines of force. Two limiting cases are obviously possible here.

1. The potential difference is evened up through the solution so
rapidly that the convection current of ions along the surface is com-
pensated by currents through the adjacent layers of solution without
any noticeable accumulation of charges at the rear end of the drop.
In this case the transfer of ions over the surface by convection proceeds
freely and the resulting electric field does not retard the motion of
the liquid along the surface. Hence the velocity of fall of the drop
is determined, as in the absence of electrolytes, by formula (1).

2. The potential is practically not equalized at all and ions conti-
nually accumulate at the rear end of the drop until the resulting
electric field completely stops their further transfer over the surface
by convection®*.

In other words, in this case, the resulting electric field will
completely stop the motion of mercury at the surface of thedrop,
which will thus fall as if it were solid. The velocity of fall of such
a «wolidified» drop is given by the Stokes law 2.

An exact computation, carried out by B. Levich ° brings tothe
following general expression for the velocity of fall of an ideally
polarizable drop:

: (3)

* Strictly speaking, besides currents through the bulk of the solution the
concentration of ionson the surface can also be evened up by surface diffusion
and surface conductivity, but here too, as in Part I, we shall neglect this
small effect.

> Part 111, to appear shortly.
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It may be seen from (3) that the first limiting case is realized when

2

L/ < p+p/, and  the second—when the reverse inequality is
fulfilled. Thus, here too, as in the case of motion in an electric field,
an increase in the surface density of charge completely damps the
motion.

The transfer of the ions of the double layer by the flow of the
fiquid is accompanied by the appearance of an electric field in the
space surrounding the drop.

Computations yield the following expression for the distribution
of potential in the neighbourhood of an ideally polarizable drop
falling in a liquid unbounded by walls:
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where 6 is the angle between the radius vector and the direction of

fall of the drop (Part 111).

Smoluchowski derived an equation similar to (4) but with a dif-

cos 0 ; .
~a—lorthe case of a solid particle’.

ferent value of the coefficient of

Equation (4) is valid at distances which are small compared to
the diameter of the tube. The potential difference between the fore
and rear ends of the drop, according to equation (3) and (4), equals:

Jz ;
A= T (5)
x(pE+g

Equation (5) could be obtained, except for the numerical coef-
ficients, from considerations of dimensions. Denote by V the velo-
city of the liquid at the surface of the drop with respect to coor-
dinate axes fixed in the centre of the drop, and let V be positive for
upward motion. Then the force with which the external medium acts

on 1 cm? of the surface of the drop is equal in order of magnitude to

(U—V e . . S

— —L—n)i . This force is counterbalanced by the viscous strain inside
¢

/P.,

4

v A\
the drop =

and the retarding action of the electric field »f»';‘l; .
bHience, in order of magnitude
Juw! cAD (U ~-V)n
S P L
o 14 «a

$Smoluchowski,Graetz, Hand. der Elektriz. und des Magnetismus,
2,385 (1914).



196 A. Frumkin and B. Levich

But, as it was poinled out in Seclion 4, Part I, we have in

order of magnitude

A(I)NE 5
%

whence
Uzp

AP~ ——M8M ——— .
x <p+u’+s_—;_ ‘

When a shower of drops falls through a solution, a poten-
Lial difference — called sedimentation potential —will obviously
be set up along the height of fall.

Let the number of drops per unit volume of solution be
sufficiently small, so that the distance belween the drops is
large compared to their dimensions. It can then be assumed
that each drop falls independently of the others and that the
electric fields of the drops are superposed additively. In this
case the sedimentation potential can be calculated exactly.

Let us, first, consider more in detail a single drop falling
through a column of liquid. We shall find the mean value of
the potential g, in a plane § which lies above the drop at a
distance small compared to the radius of the cclumn, but does
not intersect the drop; the linear dimensions of the plane are
large compared to those of the drop and to the distance from
it. The origin of coordinates will be taken in the centre of

the drop. The surface area of the part of the plane intercepted
97 2 gi ;
between the angles 0 and 0+4d0 is equal to - ZO::;LO db; hence,

using equation (4), we obtain:
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In similar manner we find for the part of the surface lying
below the drop
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Hence the sedimentation potential caused by the fall of a
drop in a column of liquid equals:

he s (p—p) st
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Let us denote by n the average number of drops per unit
volume. The sedimentalion potential E per unit length in the
column of liquid, through which the drops are falling, will
evidently equal

hrnz (5 —o’) gat 2raul zn
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where P is the weight of the drop, and S —the cross section of
the tube in which the drops are falling. Similarly to the mobi-
lity of a drop in an external electric field [see Part I, equa-
tion (32)], the quanlity £ passes through a maximum at
emax = J/ % (20— 3p’). The last expression in equalion (6) is oblai-
ned from equation (8), Part I, similarly to the case of the
corresponding relations for the mobility in an electric field,
by substituting 2p -3y’ for p and a for d.

If the ends of a column of liquid of length L and cross-section S
are connected with an external resistance W, the potential difference
is equalized throdgh the external circuit, so that a current I flows
through the liquid and the external resistance and is superimposed
on the system of local currents of the falling drops. Since the e. m. f.
of the circuit equals EL,

7 L
7 0, ~
]:LEL*=L Sz (7)
atW W

where 7, is the «current of falling drops», which flows when W =0,
Z. e. when the column is short-circuited. According to (6) and (7)
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In the case of positively charged particles the current in the exter-
nal circuit  flows from the bottom of the column to the top, and in
the column itself, consequently, from top to bottom, 7. e. in a direc-
tion opposite to the local currents near each drop. Indeed, connecting
the ends of the column of liquid is equivalent to impressing an
external potential difference equal in magnitude and opposite in
sign to the total sedimentation potential EL. The potential deter-
mined by equation (4) thereby decreases and we shall find the value
of this decrease for the case when it is most important, ¢iz. when

the drop is in the first regime of motion (°7 & 2u+43p"). In this

case, according to equation (9), Part I, the potential in the column
of liquid near the drop due to the current 7, equals

a’ 0
— ¢ COS
r2J

——E-{r—}— 11,'
so that instead of (4) we obtain:
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At the surface of the drop (r=a) the ratio of the second to the first
term in equation (9) is 6mna?, i. e. under our assumptions (distance
between the drops large as compared to their radius) this ratio is
small. In other words, connecting the external circuit does not essen-
tially affect the distribution of potential in the immediate vicinity
of each drop; hence, the substitution into equation (8) of the value of
2 from (6) is justified.

When the external circuit is open, the total current through each
horizontal cross-section of the column of liquid is zero; in other words,
the quantities of electricity transported by the convection current
due to the motion of the outer sheets of the double layer and by the
conductivity currents are equal in magnitude and opposite in sign.
One could imagine that the sum of the conductivity currents is exact-
ly equal to the «current of falling dropsy» which flows in the
external eircuit and in the column of liquid when the latter
is shorl-circuited. In this case the lotal quantily of electricily
transported through each cross-section of the column of liguid
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by electrical conduction would be equal (o zero. In realily this
is nol so, as can easily be seen from the following computation.
Let us draw a horizontal plane intersecting the drop and de-
note by 0, the angle formed by the vertical and the radius
veclor drawn from the centre of the drop to a point of inter-
seclion of the surface of the drop with this plane. The conduc-
tivity current, which emerges from the lower part of the drop
and enters the upper part, and, therefore, passes through the
cross-section of the solution indicated, equals

; L o -
L= —7.\ ',‘_ Zr:(rsmfld(): sin®f,.

The number of drops in the tube for which 0, lies bhelween
O and O0+4dfb is nSa sin 6df and, hence, the total conductivily
current equals

‘: 2 i <
7 — \ I'nSa sin 0 db — 1’ v(') 0 )g!l ns __[

22

o T 2p -3 .

The reason for the difference between [ and 7, becomes
clear if one bears in mind that the current /, which is super-
imposed on the local currents when the column is shorl-circui-
ted, and the sum of the conductivity currents flowing, when
the circuit is open, correspond to polential differences belween
the ends of the column which are equal in magnitude; but
whereas with respect to the current [, the solution acts prac-
tically as a homogeneous conductor, the lines of the current
I" composed of the local currents of the individual drops
deviate markedly from shortest distances.

1t follows from equation (7) for the first limiting case of
motion that

[y= Zznza*Sp. (u+p/ )y U.

Inasmuch as the quantily 4rxza*nSU expresses the tolal charge
of the inner sheet of the double layer on the drops passing
through a cross secticn of the tube in unil time, the current
due to the fall of the drops differs in “this case only by the
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coefficient ; (n40v')*~0.2 7 from the value which it would

have for falling spheres with a free charge equal to the total
charge of the inner sheet of the double layer.

The above reasoning loses its force in the case of a «dense»
shower of mercury drops when the distances between the drops
are no longer large compared with their radii, 7. e. niB~a.
In - this case, which is of purely theoretical interest being
difficult to realize experimentally, the electric fields near each drop
can no longer be considered independently of one another and the
local deviations from equipotentiality are averaged out. This cor-
responds to an apparent increase in the electrical conductivity of
the medium surrounding the drop, as a result of which the retard-
ing action of the charge on the motion of the surface of the drop
is weakened. Moreover, under these conditions the external circuit
now substantially affects the distribution of potential near each
drop, and in the limiting case of a very «dense» shower the retarding
action of the charge should disappear entirely when the external
resistance is short-circuited, similarly to what occurs when a liquid
is forced through a solid diaphragm. In the case of a «dense» shower,
connecting the external circuit must also affect the velocity of fall
of the drops.

The strict application of equation (4) entails imposing a number
of conditions whose exprimental realization may present some dif-
ficulty. Thus the Reynolds number should be less than unity, whereas
in the case of mercury drops falling in water U~30 cm/sec. and a =
—1072, whence Re~30. Furthermore, the change in the potential
difference at the surface of the drop should be small compared to the
initial potential difference and hence

z(p —¢') ga® sUp

—
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2 2
* () + 5

70n first thought sucha result seems surprising; however, it will readily be
understood that in the first limiting case the convection current transfers a
quantity of electricity of the order of 2malUz from the lower to the upper part
ofthe drop, i.e. through a distance a. The product of these two quantities
2ma2Usis of the same order of magnitude as the product of the velocity of fall by
the total charge of the sphere 4maZ.
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where C is the capacity of the double layer. Condition (10)can be
fulfilled with small values of the concentration (102N and less) only
if e 1s not too small.

All the above formulae refer to the case of an ideally polarizable
drop. In the presence of mercury ions the changes in the potential
drop in the double layer due to the convection current are partially
evened up through discharge of the mercury surface; this causes a
decrease in the sedimentation potential and a simultaneous decrease
in the effect of retardation of the motion. Due to the complicated
relationship between the limiting diffusion current and the angle 0,
an exact calculation is impossible, just as in the similar case discussed
in Section 4 Part 1. If the limiting diffusion current were indepen-
dent of 6, then in the case’of incompletely polarizable drops equation
(6) would have to be replaced (see Part I) by

_ hm nz(p—9/)gattt 4 mns(p—¢f)gat Y

E=y #(2ut o) F kT T 3 xk (2t 3p) f < (11)
where k=1 —1—% This expression, at any rate, allows of an appro-
ximate estimate of the decrease in the sedimentation potential due
to incomplete polarizability of the drops. Similarly equation (3)
must be replaced by

2 (- ¢ea LT

3 g2
¢ I (2p+3p) + -
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The fall of mercury drops in a liquid containing mercury ions,
besides bringing to aseparation of electric charges should also cause
a change in the concentration of the mercury ions. With positively
charged drops the concentration will increase in the upper part of
the column and decrease in the lower part. This should bring to a
potential difference between mercury electrodes of the first type in con-
tact with thesolution, whose slgn is opposite to that of the sedimen-
tation potential. In contradistinction from the sedimentation poten-
tial this effect does not disappear when the fall of the drops through
the solution ceases, but remains until the difference in concentration
inthe column of liquid is evened up by diffusion. If the mercury drops
are formed in the upper part of the column of liquid and merge to-
gether in the lower part this too brings about changes in the con-
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centration such as are familiar from the theory of the dropping
electrode. In this case, however, the concentration of mercury ions
falls off in the upper part of the column and increases in the lower
part, /. e.the change in the concentration is opposite in sign to the
change induced by the falling process itself. This may possibly ex-
plain  some of the phenomena observed by Billitzer ® in his
experiments with dropping electrodes.

The relations derived in this paper can be compared with the
results of measurements of currents of falling drops carried out by
N.Bach % In these experiments the shower of drops was obtained
by forcing mercury through a glass diaphragm at the rate of 3.1 cui®
mercury per second. The drops fell through a column of oxygen-free
solution 90 cm high and 3 em in diameter of composition z KNO, +
- 10"°*NHg,(NO,),+2x 107" N HNO,, and merged into one conti-
nuous mass of mercury at the bottom of the column. By means ol two
calomel electrodes a side circuit of resistance W was connected to
the column of liquid to allow of maesuring the current /.

N. Bach’s paper gives the values of the current of falling drops
I,, calculated from 7 and W by equation (7) for z varying from 1N
to 10> V. In one experiment measurements were made of the dropping
electrode current which set in, when the mercury above the glass
diaphragm was short-circuited with the lower mercury surface, while
the charge of the mercury which passed through the diaphragm was
found from the electrocapillary curve using the potential measured
under the same conditions. The surface area of the drops formed in
unit time was calculated from the current and the charge, while from
the surface area and the volume flow of mercury per second the average
value of the radius of the drops was found to he a=1.1 1072 cm.
The application of equation (7) to these experiments involves a
number of difficulties.

1. Under the conditions of the experiment U~30 cnr/sec., hence
30 ¢ 11 % 1072

e ~ 30, 7.e.,much greater

the Reynolds number Re~

than unity. Direct observation showed that the motion of the liquid
was of a turbulent character and the paths of the drops deviated
from the vertical.

SBillitzer, Z physik. Chem.. 48 513 (1904).
® N. Bach, Acta Phys. Chim., 1. 27 (1934).
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2. At the beginning of the fall, when the charge of a drop was still
small, condition (10) was not fulfilled in dilute solutions.

3. The expressions derived refer to a shower of drops of equal
dimensions. This condition was not satisfied in the experiments of
N. Bach, and the quantity a=1.1> 1072 ¢m expresses an average

value of a <1~0mputod according to the formula Pg) . Moreover
« was not determined individually for each solution, although due
to the dependence of the interfacial tension on the composition of
the solution, the conditions of formation of the drops varied some-
what in the different cases.

4. In the derivation of equations (6) and (7) it was assumed that
the charge of the drops e remains constant throughout the motion.
In N. Bach’s measurements of the current of falling drops the mercury
emerging from the diaphragm was not connected with any other
electrode so that the charge of the drops upon leaving the diaphragm
was zero. After falling through a solution containing Hg, ions drops
acquired a positive charge; in other words, e increased during the
motion. It is not difficult to modify equation (7) so that it holds in
the case of a linear growth of = with the path of the drop /. Since

L
. B P . .
the quantity =a*nSu equals the volume of mercury y which passes

through a cross-section of the column in unit time, it follows from
equations (6) and (7) that

(12)

Suppose now Lhal = increases linearly with [ and denotes by =,
the value of &, which the drop acquires on  passing through a
column of length L. Then

l
L L 2 -—dl
By 1 \ zd sy | \ L o
o L s 2 L | 2 =2,
e - — TR e LM S,
o 3% Y 1 I 3z
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In N. Bach’s experiments y=3.1 cm® per sec, p=0.0105,
v’ =0.015, a=1.1x 1072, Inserting these values in equation (13),
and going over to practical units we can wrile:

I=15.3% 107 2 1g (141.27 X 10 <3). (13a)

If, after passing through a column of liquid of length Z,
a drop acquires a charge s, which then grows according to a
linear law up to a value corresponding to a length L, then it
is easily shown that for a section of the path L—L, we obtain
instead of (14):

2

&L
. p+w o .
(=0 F 4y B 153 T —2 %
ha g1 — 81 , 3L 2L 3L
Bt +§

141.27 X 108 P2t

LGl . . 14
X8 (F1a7x 1073 7 1° (14)

In order to apply equation (13) it is necessary to know the
charge acquired by the drop at the end of its path.

One of us (B. Levich) found the following expressions for
the diffusion current per unit area of the surface of a spherical
patticle moving in a solution'

. - D 1/R -
(ay=0.85 (27 ) W nyley (15)

_in the case of a liquid drop, and
. D2 13 )
(Ja)s=11 <7,2'> n ey, (16)

for a solid particle; D denoles the diffusion coefficient, n; — the
valency and c¢;—the concentration of the diffusing substance
(in moles per em?®). In the present case D=0.78 % 107 (from the
mobility of mercury ions at 25 —68.6 recalculated for 18)
and n;c,=107°.

As shown above the regime of a mercury drop in a solution
of an electrolyte corresponds to the regime of fall of a liquid
drop if = € emay, and to that of a solid spherical particle if
2 emax, Where s =212 (204 3p’)12, Since the dependence of
Ja on U is not known for intermediate values of =, an approxi-

10 Acta Phys. Chim., to appear shortly.
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mate assumption was made in computing =, according to which
jq is given by equation (15) for all values of &< 2max and by
equation (16) for & > zpax. U was computed in the first case
from equation (1) and in the second—irom equation (2). Hence,
applying equations (15) and (16) we obtain:

(jo)i=13x107° ajem® and (j;),=2.7 X 107° a/em*.

When the total concentration of the solution is less than
10~* N one can assume that throughout the time of fall the con-
dition & > emax 13 practically fulfilled. In this case s, was com-
puted according to the formula

¢ conl.
cm?

b UL (Ja)s=7.6 107

For the most dilute of the solutions investigated with
x—2.5%10"%, a correction must be made for incomplete polariz-

abilily, since in this case the quantity k= 1—{—234/ was different
from unity. Indeed, according to the equation W =RT|2Fj,, for
ja=2.7x 1075, W—==4.7% 10 and k=1.5. In this case, on the
basis of equation (11) the quantity (»-p’) in equation (13) must
be replaced by (w-v’)k; this, however hardly affects the result
which is determined in the main by the coefficient preceding
the logarithm. For a 107* NKNO, solution (z=1.4X 107°) k= 1.08
and the correction for incomplete polarizability has no practical
imporlance.

In the case of solutions with a total counceniralion equal-
ling 10* N and 10N in a considerable part of the path of
the drop & < emax. In such cases the computalions were carried
out as follows. The value of emax Wwas calculated for each solu-
tion; then the expression

- e e
Smax = &L, =37 |/ l)l
1 U, C

was used to delermine the path 7, which a drop must (raverse
in order to acquire a charge equal 1o emay. The charge which
the drop possessed al the end of its fall was found from the
equation

el —zemax = U

L-L,,.
- :“1 (] Ll)S'
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Substituting these values of s, and =, in equations (13)
and (14) it is easy lo find the values of I, and [, corresponding
to the first and second parts of the path and hence from the
byt Ia (L= L)

L
In the case of a normal KNO, solulion such computations lead
to values of = exceeding the possible equilibrium value in the
given system. The equilibrium potential of mercury in
N KNO, 410" N Hg, (NO,), equals 0.63 and is 0.91 away from Lhe
maximum of the electrocapillary curve. The average capacily on
the positive branch of the electrocapillary curve of KNO, accord-
ing to Kriiger’s data ' is 29 x 10°% whence for the equilib-
rium value of ¢ in this solulion we obtlain &=26<10° The
drop could have acquired this value in —ég—éll::f; =2 sec. over a
path of 73 cm; on the remainder of the path the value of
should have remained constant. In this case 7, was computed for
the first part of the path by equation (13) and I, for the second
part by equation (12) with a value of =26 10" the total

7

equation [, = lo delermine the lotal value of /.

(0]

Table 1

Currents of falling drops 2 KNO;+ 1078 NHg, (NO,), + 2 1077 VHNO, solutions

& Io obs- (according

% | % 1 L ‘ Toate. to N.Bach)
i

(B 8,05 107 26X 167 ‘ 1.6 1073 2.3% 1073

1071V 1.05x 1072 141078 ‘ 6.9x 104 3.2x107%
1072V 1.18 <1073 9.8% 1073 1 2% 1074 1 <107
1073V 1.26 1074 7.6 1076 1 h.hx 1072 1.9%107°
1074 LA X1073% | 7.6x10™ | 7.5x1078 A3 1078
L1072y 2.5 x107¢* 7.6 1078 171677 9.3x1077

*Corrected for the electrical conductivity of the initial water 1x107¢.

value of 7, was found from /7, and /, as described above. The method
of computing = is not entirely reliable, however, this circumstance
introduces a much smaller element of indefiniteness into the

M Kriger uu Krumreich, Z Elektrochem., 19, 617 (1913).
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calculation of [ than might at first appear, since the variation of =
within certain limits does not affect the value of I very strongly. The
final results of the calculations are summarized in Table 1. The
third column gives the calculated values of = at the end of the path
of the drop.

gl
.L?_
[/_
.‘5‘_
_6‘_
e

Abscissae—lg %
Fig. 1. Currents of fallino drons in acidulated KNOj so-
lutions of different conductivity: 7—calculated values;
2—experimental values of N. Bach.
Fig. 1 shows the dependence of / on % in the logarithmic scale.
If it is taken into consideration that the conditions of the experi-
ment differed markedly from those strictly demanded by the theory,
and that the computation of =7, was not entirely reliable the agreement
between theory and experiment may be regarded as quite satisfac-
tory. At any rate, the theory gives the correct order of magnitude of
I, and the dependence of 7 on the electrical conductivity over a wide
range of values. It should be borne in mind that in the case of solid
particles 7, should increase, not decrease, with dilution of the solution,

2. The flow of mercury from a capillary

Antweiler 12 observed that when water flows out of a
capillary tube the liquid in the drop describes a turbulent motion.
The velocity of this motion is naturally greater, the greater the velo-
city of the liquid jet emerging from the capillary. When mercury

2Antweiler, Z Elektrochem., 47, 839 (1938).
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drops emerge into solutions of electrolytes similar motions should
arise. However, the familiar Ilkovie-Rideal-McGillavry formulawhich
forms the basis of polarographic analysis is derived on the assump-
tion that a drop grows like a rubber balloon, only by radial dis-
placements, and the wide applicability of this formula shows that
in many cases the tangential motion of the liquid can be disregar-
ded. Krjukova and Kabanov ! obtained polarographic

: curves in sufficiently concentrated
solutions of electrolytes which reveal
the presence of motions connected
with the flow of mercury from a capil-
lary and observed these motions di-
rectly. They are represented schemati-

Q cally in Fig. 2 (according to Krjuko-

va). These motions can give rise to ad-
ditional maxima on the polarographic
curves which to distinguish them
from the ordinary maxima connected
with the unequal polarization of the
mercury surface, can be called polaro-

Fig. 2. Flow of mercury from aca-  gpaphic maxima of second kind. We
pillary tube according to T. Krju- ¥
Kova. shall not, however, dwell any further
here on the theory of these maxima,
but shall limit ourselves to the case when the growth of
the drop in the electrolytic solution proceeds in the absence of a
current, 7. e. unaccompanied by electrolysis. The motions on a
mercury electrode will be discussed in a subsequent paper.

The motions which arise in -a drop upon emergence from a capi -
lary should carry back the charges of the double layer to the upper
part of the drop and the resulting electric field should retard the
motion, especially in the case of large charges and small electrical
conductivity of the solution. Inasmuch as the phenomenon is quali-
tatively fully similar to the case of falling drops already discussed,
it is superfluous to dwell on it any longer. The com plexity of the dyna-

13 Krjukova and Kabano v, J. Phys. Chem. (Russ.), 13,1454
(1939); ibid., 15, 775 (1941).
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mical conditions in the case of flow from a capillary renders diffi-
cult the development of a strict quantitative theory. However, the
theory of the current caused by falling drops contains one relation-
ship, which can be applied with benefit to the present case. The
velocity v at some point of the surface of an ideally polarizable

drop (e. g. at 0:;) relative to a coordinate system fixed in
the drop is equal, as will be shown in Part 11I, to
o 250
- 7(17 (P —¢ )g”':g (17)

2+ 3p
b4
If we denote by v, the value of v with the same u and v’ but
with =0, we have, accordingly:

V. __Qy.—}jp') B (18)

‘o <2p+im’+j—'>

It is clear from the qualitative analysis of the phenomena occur-
ring in the motion of a charged surface, which was given in Section 1,
that arelation similar to (18) should also apply to the flow of a drop
from a capillary, the difference in the dynamic conditions merely
causing a change in the numerical coefficients. When a drop flows
out of a capillary the motion of the mercury surface is communicated
to the adjacent layers of the solution, as depicted in Fig. 2, and can
be observed, e. g., if particles of carbon powder are suspended in
the solution. It was in this manner that equation (13) was subjected
to a semi-quantitative analysis by T. Krjukova, who kindly permit-
ted us to utilize her results. The flow of mercury took place at the
rate of 10.8 mg per second at constant potentials in an oxygen-free
solution; the diameter of the drops was 1.1 mm; the drop time < —
=0.9 sec. A comparative estimate of the velocity of the particles
suspended in the solution was made by visual observation through
a microscope of the region near the lower surface of the drop where
the velocity is greatest. The maximal velocity was 4—5 mm per

second. The relative values of the velocity,:.e.the values off:—,
0

estimated at various concentrations and potentials, are represented
in Fig. 3 by arrows. After these measurements were made the values

2 3p” .
~L}L“ were calculated. Introducing the

2+ 3w+~

of the function f=

Acta Physicochimica U.R.S.S. Vol. XXI, No 2. 2
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numerical values of p and p’ and expressing = and » in practical
units, we obtain:
f— 0.068 .
0.063 % 107221
The values of e were calculated from direct measurements of the
capacity of the mercury surface in KCI solutions. For solutions of
N, 0.4 N and 0.01 N KCI we used unpublished data of T. Borisova
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Fig. 3. Relatjve velocity of liquid motjon in the
nejghbourhood of growing mercury drop in
KCl-solutions at different potentials of the drop.
Arrows — estimated experin.ental values of
T.Krjukova. Full curve—calculated from eq.(18).

(Karpov Institute, Moscow); for 0.0001 N KCl—data of Vorsin a4
and for 0.001 N KCl—values averaged from the data of Vorsina
and Borisova. To calculate ¢ from the measured capacity it is neces-
sary to know the potential of zero charge (e =0). This latter can be
determined from electrocapillary measurements or (in dilute solu-
tions) from the position of the minimum on the capacity-concen-
tration curve. The curves in Fig. 3 represent the calculated values
of f as a function of the potential; the mercury potentials on the
axis of abscissae refer to the normal calomel electrode. The circles
on the axis of abscissae denote the positions of the zero charge poten-
tials for the corresponding solutions (—0.56 in N KCl;—0.52 in
0.1 N, 0.01 N and 0.01 N KCl;—0.51 in 0.0001 N KCl). As may be
seen from the figure, the calculated curves render correctly the

Vorsinaand Frumkin, C.R. Acad. Sci.» 24, 918 (1939).
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experimental dependence of the velocity of motion on the potential
and concentration of the solution. Whereas in the well conducting
solution NV KCI the drop behaves like a liquid at all the potentials
investigated, as the electrical conductivity of the solution decreases,
the range of potentials in which tangential motions can still be ob-
served becomes narrower and narrower, and in dilute solutions these
motions are observed only in the immediate vicinity of the maximum
of the electrocapillary curve. At other potentials the mercury surface
acts as if it were solid, or rather, as if it were an elastic membrane
and the growth of the drop is accompanied only by radial displa-
cements of the mercury. The curves v/v, vs. potential also clearly
reveal especially in more concentrated solutions a more rapid decrease
of the velocity of motion on passing from the zero charge point
towards more positive potentials as compared to the range of more
negative potentials. This is due to the greater capacity of the posi-
tively charged mercury surface.

On going over from falling to growing drops we ignored one circum-
stance, which now demands the introduction of a correction iwto
the theory here developed. In order that the potential of the growing
drop remain constant, a charging current of average density et !
must flow through it, so that in contradistinction to a falling drop
the total current on a growing drop is not equal to zero. Due to a
slightly higher resistance of the solution with respect to the lines
of current flowing towards the surface of the drop near the end of the
capillary as compared with those flowing towards the lower surface
of the drop, the charging of the drop does not take place quite uni-
formly; as a result, differences of potential and of interfacial tension
should arise, and hence also motions tending to even up these dif-
ferences.It will easily be seen that in contradistinction to the motions
previously considered, the role of the latter motions should be the
more important, the greater the charge and the lower the electrical
conductivity of the solution. In view of the smallness of the charging
current, however, this effect is small and has not as yet been detec-
ted experimentally.

It is interesting to consider the case of mercury dropping into
a solution containing mercury ions or the analogous case of an amal-
gam in a solution containing ions of the corresponding metal. Under

these conditions the quantity ;— in equation (19) should be divided

A
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. . " a . o pin .
by a «depolarization factorn k= 1+~’_~/W the significance of which
was explained above: '

A Gptay) (19)
L AR W S

4 ko=

It follows from equation (**) that in the case of depolarization
tangential motions should occur at higher values of = as well. This
conclusion has not yet been checked experimentally.

A further verification of equations (18) and (19) ‘is planned by
means of quantitative measurements of the velocity v at different
potentials and concentrations, it is also proposed to make measure-
ments in presence of substances exerting an additional retarding
action on motions of the surface, such as multivalent cations, sur-
face active substances, etc.

Summary

1. The dependence of the sedimentation potential and the cur-
rent caused by the fall of mercury drops in an electrolyte solution on
the radius of the drops, charge density, electrical conductivity and
viscosity of the solution is determined; it is shown that the behaviour
of the drop varies depending on the value of the dimensionless quan-
tity x(—Qp.%f))?) . At small values of this number the mercury drops
behave like liquid drops, whereas at large values the electric fields set
up retard the motion of the surface and the drops act as if they were
solid. The derived relations were borne out by the results of measu-
rements of currents caused by falling mercury drops obtained by
N. Bach.

2. It is shown that the process of flow of a mercury drop into
a solution also depends on the value of the same number. At small
values the flow will be accompanied by eddy motions of the mercury
inside the drop, the mercury on the surface flowing from the lower
to the upper part of the drop. At large values the drop will grow only
by radial motion of the liquid, as is usually assumed in the theory
of polarographic analysis. These conclusions were checked by data
of T. Krjukova on the motion of the liquid when mercury flows into
KCI solutions of various concentrations.
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