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Dragging of a Liquid by a Moving Plate
By L. Landaw and B. Levich

One of the methods of depositing a thin layer of liquid
upon a surface of a solid, which is wetted by it, consists
of pulling out an infinite film with constant speed v,.

This method is applied, in particular, in the cinefilm manu-
facture with the purpose of depositing a uniform layer of photo-
sensitive emulsion upon the cinefilm base.

From the trough containing the dissolved photosensitive
emulsion an infinite film, wetted by the solution, is pul-
led out. ‘

After the solvent has evaporaied, a uniform layer of emul-
sion is left deposited upon the surface of tbe film base.

. The problem of determining the thickness of the dragged
layer as a function of the speed of the motion of the film
and of parameters characteristic of the properties of the fluid
(its viscosity 7m, its surface tension ¢ and its density p) is of
essential interest for practice.

Numerous attempis ai evaluating the thickness of dragged
layer of fluid found in literature contain some incorrect
assumptions in the very basis of the method of computation,
thus leading to erroneous formulae for the value of this
thickness.

In the present paper the thickness of the layer and the
quantity of fluid carried along when pulling an infinite plate
out of a vessel, which is sufficiently large (o permit the
neglecting of the effect of its walls and of the edges of the
plate, is evaluated.

Let us choose a sei of coordinates in such a way as to make
the plate —a plane 7=0 and the surface of the liquid undis-
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turbed by the capillary meniscus (i. e. sufficiently far from
the plate) — the plane z=0, with the z axis directed upward
along the plate. o

First of all, lel us consider the case of low velocity
of motion of the plate (it will be stated below which veloci-
ties can still be considered low).

In this case all the surface of the liquid may be separal-
ed into two independent regions: the region of the surface
situated high above the meniscus and directly dragged by the
plate, where the surface of liquid may be taken to be nearly
parallel to the plate surface, and the region of the meniscus
of liquid, which will be slightly deformed by the motion
of the plate, hence the shape of the surface will nearly coin-
cide with the shape of static meniscus.

Below we shall write down the solutions of hydrodyna-
mical equations in both independent regions and then connecl
both of the solutions found. '

Let us denote by h the thickness of a tayer of liquid,
when measured from the plate. We shall look for h=h(z)
in both of the independent regions. First of all. let us write
down the equations for the thickuness of the liquid film carried
along by the moving plate, /. e. the equations for A in the
first regiomn.

Since the surface of the liquid in the firsf region is nearly
flat, if is clear that the motion of the moving liguid in this
region will also be nearly flat. In other words, the main
component of the motion of the liquid in the first region
will -be the flowing down of i nearly parallel to the plate
surface. » ;‘

This peculiarity may be used in order to simplify - the
equalions of hydrodynamics suitably for this. case. '

In fact, it is evident that the only component of the velo-
city of fluid which plays an essential part is the vertical
(along the z axis) component u,.

It is evident as well that the gradients of the velocity
along’ the Ld.ireCLinn normal to the plate (ZZ’ are large as com-

pared with the gradients of velocity along tbe plate f{;; ‘L
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Therefore the motion of a liquid carried along with the
plate is described by the equations of the Prandtl boun-
dary layer, which in the stationary case have the form:

du 1 dp .
A=y w8 )
9p
ox 0. 2)

Here, for the sake of brevity, the z component of the velo-
¢ity u, is designated simply by u. Other symbols have their
usual meaning.

As the boundary conditions for equations (1) and (2) the follo-
wing conditions will serve: on the surface of the plate, no slip
between the liquid and the plate occurs, hence

u=v, at z=0. 3)

Here o, is the velocity of motion of the plate.

On the free surface of the liquid, at z=~Ah(z), where 4 is
the thickness of the liquid layer, the pressure inside the liquid
must be equal to the capillary pressure p, and, moreover,
the tangent stress must be absent, so that:

p=r, )
du v r=h. (4)

15, =0,

The capillary pressure is known to ejual

[
pg:}??

¢ being the surface tension, R —the radius of curvature of the
surface. :
Substituting the well-known expression for the radius
of curvature R, we get:
d2h
dz?

dhNz2%: "
[,+ az}] |

As long as the thickness of the layer of (be liquid carried
along is very small, it is evident that the curvature of the
surface of the liquid in the vicinity of the plate also will

py=—3 (5)
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he very small. Therefore, the square of dh/dz in the denominator
of equation (5) may be neglected, and the following equation for
the capillary pressure in the region of the liquid carried along
may be finally written down:
' dh
PR30, (5)
Therefore, the first of the boundary conditions (4) may
be rewritten as follows:

p ~~cg—‘}; at z=~h.
However, it follows from equation (2) that the pressure is con-
stant along the thickness of the liquid layer carried along.
Thus, not only on the free surface, but throughout inside

the liquid pressure is also given by
p=—o dzt * (6)

The solution of equation (1) satisfying the boundary condi-
tions (3) and (4) is:

u = ,0+<.j~ §§+P€) C% - ;,x) -

A ®ER) o

where the value of p is substituted from equation (6).

Let us finally make use of the continuity equation, in order
to connect the thickness of the liquid layer with the flow
of the fluid carried along by the plate.

For steady motion of the fluid, keeping in mind the incom-
pressibility of fluid, we may, evidently, write down the con-
tinuity equation in the form:

h
]‘ o g u dh == :()nst,
0

where 7 is the flux of the fluid per unit of width of the plate.
Substituting the value of u from equation (7), we obtain:

3h . .
b (e s E ®
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Equation (8) defines the thickness of liquid layer %(z) far from
the surface of the fluid (in the first region?). '

In the second region, near the fluid surface, the thickness
h(z), as has been said above, is determined by the equation
for the static meniscus.

Let us rewrite equation (8) in a more suitable form:

@h __3n (—1teh)  og ,
e ®)

g

Let us introduce a neV\ dimensionless coordinate » determined

by the equation
1/ i
b= <3n> . 4/3 ’ ) (9

and a dimensionless expression for the thlcl‘nese of the liquid
layer

p() =G, (10)

“Then, introducing » and u(A) into equation (8), we find:

1 J— 72 ‘

St a

~ The order of magnitude of the 1ast term in equation (11) which
c¢ontains all the dimensional quantities involved in the problem,
is determined by the kind of dependence of the flux ; on the
velocity of the plate v,. If the flux ; is proportional to v, in
the power higher than ?/,, then the last term in equation (11) will
be simply proportional to v,, and for sufficiently small values
of velocity of elevation v, will be small as compared with unity.
We assume the flux j to depend on v, in the way méntion-

ed above. Then the last term in equation (11) is in fact small
as compared with both the first ones and may therefore be
neglected. It will be shown later that this assumption turns
out to hold within some regions of velocities of elevation
of the plate. Thus, the region of validity of solutions of equation
(1 'obtained on the basis of this assumption will.be defined.

1 One of us (B. L e vich) has been kindly informed by B. V. Der -
jaguin thathe wasfirst to obtain this equation. However, B. V. Der -
jaguin, has failed to derive from it any particular conclusions con-
cerning the thickness of the film carried along.
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~

o

Neglecting the last term in equation (11), we get finally:

Pp_1—p
p7 p‘a °

(12

“The following conditions serve as the boundary conditions
for equation (12): on the upper boundary of the region, for very
large values of z (far from the surface of the liquid) the thick-
ness. of the liquid layer 2 must tend to a constant limit #,,
which evidently equals: ‘

hy ->,i for z-= oco.
Do

" The derivatives dh/dz and d*h/dz* must in this case tend
{0 zero.

Therefore, in terms of dimensionless quantities A and g,
the boundary conditions may on the upper boundary of the
region be written down in the form:

for b~ oo, (13}

. In order to determine the boundary conditions on the lower
boundary of the region, at small values of z (near the meniscus),
let us turn to the equations for the static meniscus, which
determines the shape of the surface of the layer in the second
region. :

The equations for the static meniscus have, as is known,
the following form:

ah

% o 8% ’ A
T dn~Neq e s (1“9
[+ ()]

“ _‘_Integrating equation (14), we find
an
dz . pga®

dh\ 2 1/2M23+c
[+ ()]
dz

The constant of integration may be determined from the boun-
dary conditions far away from the plate. In this case precisely.
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z—0and dh/dz -0, i. e. the surface of the fluid is horizontal.
Therefore ¢ = — 1 and

d/i

[ (”“‘“ I

The quantity <E§> e entering the equations (14) and (15) is

. (15)

the Laplace capillary constant, having dimensionality of the
length. The capillary constant is the characteristic length of the
problem of the static meniscus. If we shall designate it by 4,
then equation (14) and (15) may be written down in the form:

dzh
_— ./fig'}i; ==, A4)
\ * ‘
[1“\mj]
dh
d; . -2 1 (15:}

dhN2Ye 2a?
[+ ()]

Equations (14) and (15) determine the thickness of the layer
of liquid A(z) in the second region close to the meniscus.

At small values of £ (z), s;nall as compared with the capillary
constant, and large values of z, the solutlon of the equality (14)
must evidently go over into the solution of the equation (12) for
the thickness of the film carried along. We must, therefore,
.chain together the golution of equation (12) with that of equation
(11). The conditions of chaining together of both the equations
will at the same time serve at the sought for boundary conditions
of equation (11) at the lower boundary of the first region.

The conditions of chaining together of both solutions shall
be obtained from equation (15’) with the aid of the transition
to the limit of the small thicknesses h-»0.

It ig clear that with A tending to zero the quantity dh/dz
in the formula (15’) will tend to zero as well. Since the sur-
face of the liquid wetting the film in the vicinity of the film
itself would be almost vertical, we find at the same time
from equation (15) that to the thickness, tending to zero and to the
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almost vertical surface of the liquid, the finite altitude, tend-
ing to the limit value ‘
z->2a (16)
corresponds.
Next, with the aid of equation (14) we find at the same time that
the second derivative of the thickness d*k/dz®in the static solution

tends to the limit

dzh 2

a7 (17
Going over Lo the dimensionless coordinate » and to the thick-
ness n, we find, with the aid of equations (19), (10), (16), (17):

) (G >1/° %ja
e o -
3 v/3’

Y225t
diz v:/a(gn)’/s'

},L — 0 ( 1.8)

Thus, we see that the boundary with the first region, % ,
tends to a constant limit, determined by equation (18).

Let us turn now to the boundary conditions of equation (11)
al the lower boundary of the region. Here the thjckness of
the film of the liquid carried along will be large as compared
with the limit thickness p =1 at the upper boundary of the
region. In other words, the valuea of p tending to infinity
correspond to the lower boundary of the region. Therefore, we
must find the boundary conditions of equation (11) with p — co.
Thus, the boundaries of both independent regions overlap. .
w-> oo corresponds to the lower boundary of the first region,
p.—0--to the upper boundary of the second region.

We shall require. as a condition for chaining together the
solutions of both regions, the continuity of the second deri-

. d2p
vative qne
From the point of view of geometry, the continuity of %’:

expresses the continuity of the curvature of the surface in the
region of small curvatures. If we shall designate by a the limit

. rd? . . . .
lim (ﬁ;)u_m » where p is the solution of equation (11), then with
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the aid of equation (18) the condition of chaining together the
solutions for bhoth regions may be written in the form:

(‘FF) B ]/§ a c“:/f_l; o

daz w0 Mvz/s (3:})2/3 =

(19)

Inasmuch as no dimensional quantities enter equation (11), « is
a pure number. The quantity « may be found by means of the
numerical integraticn of equation (11), which will be performed
below.

Equation (19) gives us

f= K3 Vﬂvj’/s (31))2/3
V2 e

(20)

The condition (20) will be discussed later on. In order to per-
form the numerical integration (11), it is necessary to investi-
gate in more detail the character of the tending of the deriva-
tives dyp/dh and d*»/d)\* to zero with A increasing infinitely, i. e.
at the upper boundary of the region [see equation (13)]. It may be
established from the behaviour of the asymptotic solutions
of equation (11).

Namely, for sufficiently large values of %, the thickness
v. may, evidently, be represented in the form:

Ny b () =14p, () (21)
with g, () < 1. ’

Then substituting the value p () from equation (21) into
equation (11), we find, after neglecting the squares of small
quantities, the linear equation for p:

[0 e

AL N (22)

ans
As the boundary conditions for equation (22) serves:

p, —0 for ¥ — oo.

As a particular solution of equation (22), satisfying this
boundary condition, may serve:

1, = const - e~".
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It is evident at the same time that

dpy

i —const - e7h = —up,,
A2, .

T = consl - et =y,

Thus, at large values of 1 we have the following asymptotic
equations for v and for its derivatives:

p=1-const . e, (23)
dun. 3
- = 1 —u, (23")
a2 Y

—d}‘:- = 1 . (‘2‘3 )

The values of the constant figuring in equation (23) turn out
to be unessential for our purpose. For the direct performance of
the numerical integration of equation (11), with boundary con-
ditions(23), (23’) and (23"’) keptin mind, it would be convenient
to lower theorder of the equation, choosing p as the new variable
quantity, and (dp/dh)® as the new unknown function. If we
shall designate (dp/d)A)* by &, then, after simple transformations,
we find the following equation for &:

@ 2(1l—-yp)

S (24)

The boundary conditions (23)-— (23"') may be now written
down as
E’:"(i““l")27 ] -
E20e-1) (@)
for e —> 1.
 We are directly interested in the quantity « equal in the
new designations to

. dy 1. /dEN
as=lim () | = lim (&)

The numerical analysis of equation (18) with houndary con-
dition (27) gives for a the value

2=0.63 ...
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Substituting this value of « into equation (20) for the flux of
the fluid, we get finally
73 02/3

LT 20"
<!/ (pg) "> (20’

7 =2.29
We see thus that the conditions of chaining togethier of the
solutions in both regions allow to express the flux ;j by the
characteristic quantities of our problem. It follows from equation
(20) that the quantity of the fluid carried along by a slowly moving
plate is directly proportional to the velocity of the movement
v, lo the power °/,, and to the viscosity of the fluid to the
power /., and is inversely proportional to the tension to the
power '/ (i. e. il shows a very slight dependence on the sur-
face Lension). :
The limit thickness of the layer of the liquid carried along
by the plate far away from the meniscus of the fluid, . e.
at p=1. would be [cf. (10)]:

j 9 ¢ (Tfo'ﬁ)z'l3 o
h,=2.29 —=32"— . (26)

We see, therefore, that the limit thickuess of the layer of
liquid carried along is proportional to the velocity of the eleva-
tion of the plate and to its viscosity to the power */,, and
shows a rather slight dependence on the surface tension, being
inversely proportional to it to the power '/,.

Let us ascertain now the conditions of the applicabilily of
the formulae received [equations (20) and (21)] for the con-
sumption and for the thickness of the layer carried along..

In going over from (15) to (16), we omit the last term of
equation (15), on the assumption that the quantity pg/*/3nvé is
small as compared with unity.

Substituting for j its value obtained from formula (22), we
find that this quantity is really small as compared with unity,
and our calculation is legitimate if the following inequality is
fulfilied:

> l/. . .
(13—") ';<<1, L. e. vo(%, (27)

i. e. at suificiently small values of the velocity of the plate.
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The expressions obtained for ;j and A seem to be in good
accordance with the experiment. Indeed, the experiment shows
that the thickness of the layer carried along is proportional
at small velocities to v, to the power 0.6, which agrees with
the power index obtained by us.

In the opposite limiting case, when the velocity ¢, turns
out to be greater than s/v, the given calculation becomes inap-
plicable. Namely. the supposition that all the surface of the
fluid may be split into two independent regions, which has
led to all the expressions written above, does not hold here any
longer. It is impossible to obtain in this case the exact expressions
for j and h. However, on the basis of dimensionality consi-
derations, the general character of the dependence of these
quantities on the fundamental parameters v,, v, ¢ and s at
sufficiently large velocity may be pointed out.

Namely, it is clear that at high velocities the consumption
7 and the thickness % of the layer carried along should not depend
on the surface tension. From the viewpoint of physics, this may
be seen from the fact that at sufficiently high velocities of
the plate, the shape of the entire surface of the fluid would
be determined by the character of the process oi carrying along.
and not by the static properties of the surface of the fluid.
Therefore, at high vefocities of the plate, the thickness of the
layer carried along must depend only on the quantities v, 7, o
and g. The only quantity of the dimensionality of length,
which may be obtained from these quantities, is the quantity
(mo/pg)'/2.

Therefore, at sufficiently high velocities of the elevation
of the plate, the thickness of the layer of liquid carried along
must have the form:

hae A( ™ 26
pg> (28)

and the consumption

1
JR A ((;;> /'113/3.

- .
ne numerical value of the constant 4 may be found only by
means of experiment.
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Finally, in the intermediate region of velocities, it may be
seen out of dimensionality considerations that the thickness of
the layer carried along must have the following form:

'qv >1/s f (q;q) (29)

where f(v,m/s) is some function of the dimensionless parameter
vyn/s, the form of which must be found by experiment.

In both the limit cases of large and small values of v,7/s
the function f(v,%/0) tends accordingly to unity and to (v,7/s)Ys,
respectively, so that equation (29) goes over into equations (28)
or (26).

In conclusion we should like to express our gratitude to
M. M. Kussakov and B. V. Derjaguin, who have called
our attention to the experimental and the technical interest of
the problem treated here.
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