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1. An analysis of diffusion in a plane-parallel channel in the presence of a Poiseuille flow was made
in [1, 2] for a two-sided slot electrode, It is interesting to consider also the transient and steady-state dif-
fusion processes to an electrode situated on only one wall of the slot channel. Under current-limited con-
ditions and in the presence of a constant Poiseuille flow an important characteristic of the steady-state dif-
fusion process is the complete-absorption length L;. To find L, we can use the asymptotic solution based
on the theory of heat exchange in a channel consisting of a plane slot, one wall of which is thermally insu-
lated and the other a good thermal conductor [3, 4]. In that case the density of the diffusion current j for a
unilateral electrode can be expressed as:

j == (2Dco | k) [1,08 exp(—3,64Dz [ vsh?) + 0,72 exp(—354Dz [ voh?) + .. ], (1)

where D is the diffusion coefficient; h is the width of the channel; ¢4 is the initial concentration of reacting
material introduced into the channel by the Poiseuille current with a velocity vy in the center of the channel;
the z axis is in the direction of the current and lies in the electrode plane; and the origin of the coordinates
is located at the origin of the plate electrode,

The first term of Eq. (1) is dominant at distances which can be evaluated from the relative magni-
tudes of the first and second terms, The second term reaches 1% of the first when zy =0.13 voh?/D. When
z > z; it can be terminated at the first term with an error less than 1%. The diffusion current to the elec-
trode of length L (with an error less than 1% if L > z;) is then equal to:

i N bI jdz = Ic[t —0.90 exp(— 3.64DL/voh?)), (2)
L

where Qp is the amount of material introduced into the channel by the hydrodynamic current; AQ is the
amount of unreacted ions leaving, beyond the electrode limits; b is the dimension across the electrode disc;
Ic = 2bhcgvy/3 is the diffusion current of complete absorption; and 7 = 2vy/3. On the basis of Eq. (2) a leak
coefficient of the plane uilateral electrode can be introduced:

ky = AQ [ Q= 0.90 exp (—3.64DL / voh?). (3)
By substituting the previous value of z; in Eq, (3) we find that the error in calculating the diffusion

current does not exceed 1% if the condition AQ/Qp, < 0.56 is satisfied. Equation (3) makes it possible to
calculate the complete absorption length Ly. Assuming, for example, that k; = 0,01, we find

Lo = —(voh* [ 364D) In (ki [ 0.90) = 1.2400k? | D.
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The leak coefficient of a double-sided plane electrode is according to [1],

kr = 091 exp (—11.3DL | voh?).

A comparison of ky with k, indicates that the intensity of absorption of the reacting material by the double-
sided electrode is relatively high, For example, the length of complete absorption on a double-sided elec—
trode when ky = 0,01 is 0.40 voh?/D, i.e., one third of L.

Oleinik et al, [5] and Fish [6] obtained an approximation for the stationary diffusion current to a slot
electrode assuming a plane (but not Poiseuille type) of velocity profile. Hence, the leak coefficient of a
single-sided electrode is

k* = 081 exp (—3.70DL | voh?).

Thus, the agreement hetween k* and the result of the calculation using the Poiseuille velocity profile is
found to be significantly better than in the case of a double-sided electrode [1].

2. In examining the transient diffusion process we shall consider the electrode length L to be greater
than the complete-absorption length Ly (k; <« 1), We can thus consider the electrode to be of infinite length,
We shall find the transient diffusion current during a gradual change in that external perturbation which is
the cause of the appearance of the hydrodynamic current, Since the relaxation time of the hydrodynamic
process Ty is small in comparison with that of the diffusion process Tp We shall consider that the hydrody-
namic current velocity changes instantaneously from zero to the steady Poiseuille profile: v(x) = (4vy/h)
(x—x2/h). (The x axis is perpendicular to the walls of the channel,) It is thus assumed that the concentra-
tion distribution cannot change appreciably during the time Ty. With high values of the Péclet number, dif-
fusion in the direction of flow can be ignored. We then obtain for the current-limited regime the following
boundary-value problem

dec / 0t + (4vo/ k) (x — 22/ h)dc / 8z = Dé%c / 322, (4)

climo=0; c¢]|sm0=rco; de [ 0z xvmo=10; c¢|s=n=020, (4"

[~ =]
where c is the concentration of reacting material and t is the time, By changing to Q(x, t) = [cdz we find
for Q 0

Q / 02> — D9Q / 0t = —4hnp (), (5)

QIt=U:0§ ao/axjx=u=0; Q!,_—_—.h=0, (5Y)

where p(x) = (vgey/7Dh) (x — x*/h), The solution can be written in the form given by Morse et al, [7].
5 It
Qz,t)={ dat'[ p(«') G (z,t|2,t')dx. 6)
Here G (x, t|x', t') is the Green's function for Eqgs, (5) and (5"):

G(x,t|x',t")=(8nD/h) Z cos kn-cos knz’ exp[— Dk,2(t —¢') ],

n=0

where kp = (2n + 1) 7/2h = (2n + 1)k; are the particular values of Egs, (5) and (5'). From Eq. (6) we find
for Q(x, t):

Q = (Bugco/Dh?) knS5[2(—1)"— knh]cos k,z- [1 — exp(— Dk, 2t) 1.
P )]

n=0
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Using Q we find the transient diffusion current to a single-sided plane electrode in the current-limited re-
gime to be:

= (8vocob/h®) Y kn4[2 — kuk(— 1)7] -[1 — exp(— Dk)]. 0
h

n=0

I(t)= — bDoQ/ox

When t — = the diffusion current of complete absorption I, is established. The relative contribution of the
first terms of these series in (Eq. 7), n = 0, n =1, n = 2, to the steady-state current are respectively;

o/ 1) o =0.850; (I / I.)teo = 0.464; (5 /1) 1o — —0.018.
Therefore,Eq. (7) can be rewritten in the form

I=1I.[1—085exp (—2.47D¢ | k*) — 0.16 exp (—22,2Dt [ h?) + 0.02 exp (—61.6Dt/h2) — .. .]. (8)

The second term in Eq. (8) begins to dominate the third and subsequent terms when t > t;, where ty can be
evaluated from the relative contribution of the second and third terms. The third term reaches 1% of the
second when t; =~ 0.06h%/D, When t > 0.06h2%/D the transient diffusion current is expressed, with an error
less than 1%, by the equation

I'=1Ic[1 —085exp (—247D¢t / h?)]. (8"

Thus, the typical relaxation time of the diffusion process T = hz/(2.47D} for the single-sided electrode is
4 times as great as Ty for a two-sided electrode [1] and is equal to h%/(9,9D).

An expression was obtained in [5] for the transient diffusion current to a slot electrode assuming a
plane velocity profile, It follows from this that the diffusion current to a one-sided electrode is:

I" =I[1 — 081 exp (—2.47Dt / k?) — . . ],

Thus it is clear that the index of the exponent which does not depend on the hydrodynamic velocity is the
same as that in Eq. (8), while the preexponential factors differ appreciably less than in the case of a double-
sided electrode [1].

3. When the rate of the hydrodynamic current changes randomly, but not too rapidly with the time,so
that the current keeps its Poiseuille character for the whole time (7, is small compared with the typical
time for a change in the hydrodynamic velocity), the diffusion current can be expressed in the form of a
Duhamel integral [2]:

4

I{t)= } vo(v) L/ (t — 7)d
Jo@n e, ()

where v, (t) is the variable hydrodynamic velocity in the center of the channel ; Ig (t) is the diffusion current
produced by a single jump in the hydrodynamic velocity and is equal to I/vg,where I is determined from Eq,
(7); and I (t-7) = dig (z) /dz |z =t-r. Using Eq. (9) we consider the important particular case when the hy-
drodynamic velocity changes instantaneously from zero to the steady Poiseuille profile with a velocity of
VQH in the center of the channel and then drops according to vy (t) = qu exp (-t/T) while the velocity profile
retains its Poiseuille form., Here T is the characteristic time determined by the structural parameters of
the system (T > 7,), Using Egs. (7) and (9) the diffusion current is easily found to be

1(t) = (8cove™bD/h3) Z [2 = Enh(—1)"] [exp(— #/T)— exp(— Dk,2t)1/[k2(Dky2 — 1/T) ]. (10)

n==0

The diffusion process is characterized by a time constant D = 1/(Dky®) = h2/(2.47 D). If T > Tp then for
short times when t =T the increase I(t) is due to the transient diffusion process, The current I(t) in-
creases to the limiting stationary value I. corresponding to VUH,after which it slowly decreases due to a
decrease in the flow velocity, In this case the series in Eq. (10) takes the form:
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1(8)=(8covo"0/h%) Y kw42 — kuh(—1)"] [exp(— #/T) — exp(— Dknt)

n=>0
and taking into account Egs. (7) and (8) we find:
I(t) = Ic[exp (—t / T) — 0.85 exp (—2.47D¢t / k?)]. (11)

In keeping with the evaluation of Eq, (8), Eq. (11) in our model involves an error of less than 1% when t >
0,06h%/D,

When T « Tp,then at times short in comparison with T the increase I(t) is due to the increase in
the area of the contact of the electrode with the enriched electrolyte introduced into the channel by the hy-
drodynamic flow, the velocity of which falls rapidly, The subsequent increase in I(t) is determined by the
depletion of the solution due to diffusion towards the electrode, When T is comparable with Tp or less than
it, the relative magnitude of the term I; of Eq. (10) corresponding to n =1 increases. To express approxi-
mately the diffusion current we can use I(t) =1, + I, where

I, = (1.40¢,0,"bDT | h) [L‘.Xp [—-—tjll T) — exp (—247;0: Ir" kx)] / (2,47}92‘ / h: 1}' (12)

Iy = (2.42cove"bDT / k) [exp(—t / T) — exp(—22.2Dt / h?)]/ (22,2DT / b2 —1). (12"

The time ty, corresponding to the maximum value of the expression I(f) =I; + I, is a function of the
ratio T/TD. Figure 1 shows the curve of t,,/T against log (T /Tp), while Fig, 2 shows the dependence of
the corresponding values of the maximum diffusion current I,/1, on log (T/TD). The error A in the current
approximation using Eqgs. (12) and(12") is calculated from the equation for the rate of increase of the func-

Mo(t) +1,(t)] A and Efn(t) when t = 0, since in satisfying this equation the function an(t) for allt > 0
n=2 n=2

is majorized by the function [Io(z) + I;(t)]-A:

A:{(i df,,;dc)/ [d(10+11);’dt]}£=0

n=2
The error A is found to be independent of T/Tp and is 5%.

4. By knowing the response of the system I(t) to gradual external perturbation we can find the magni-
tude of both the characteristic times of the system, The response of I1(t) is conveniently characterized by
the parameter g8 =¥ /¥, :

where yn= [1(5)dt, p={I(t)dt.
i v

999




ar L6 6) Let us define

450 k o o
0 Bo=1po"/1ps, where 1" ——‘_f Ioydt, o :J Iydi,
bt 1783 where t* is the time corresponding to the maximum I,. If 8 is slightly dif—-
a0 ferent from By then the characteristic times T and T satisfy the system of

\\ equations [2]:
ane \ 7

E\“\_ = (T —p)-1[Texp (=" /T) —tpexp (=& /)],
azs a0 4o5 490 A B TTD(T _— ‘l:,i;})_1 In (T / TD) F
Fig. 3

Here the larger (tz} and the smaller, (t5), characteristic times of the sys-
tem correspond to a certain § and are obtained from the graph shown in
Fig. 3 of [2]. Let us evaluate the error arising when T > 7y, It is easy to see that § = ¢, /3 = 8, [1—(6—
0;—08,) /(1 + 9)],

ot a:(jg fndt)/ Vo, 51=(Ti Indt)/ v S Vel (;[:lrodi)/lpo‘,

t, n=l

and Iy, is the (n + I)th term of the series in Eq, (10),

Hence we find that AB = B=By =By 61 + 6,—8)/(1 +6). In computing 6 and 6; we can ignore the I, terms
corresponding ton = 2, The magnitude of 6 does not depend on T and Tp and is 0,192, In calculating the
magnitude of ¢; and 6, as functions of the ratio T/Tp, we can use the graph of tm /T (Fig. 1). Having found
AB from the curve in Fig. 3 of [2], we can find the dependence of the relative errors .z_\tz/tl and AtS/tS on
the parameter 8, The corresponding graphs for ¥ > 1 are shown in Fig, 3 (curve 1 corresponds to Atl/tl
and curve 2 to AtS/tS), It is clear that when y = 3.4 (8 ~ 0.775) the computational error is less than 10%.
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