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1. The limiting electrical currents of an electrode occupying the interior surface of a channel depend
substantially on the nature of the change in the convective delivery of reacting substance. In works devoted
to heat exchange in a channel [1-5], only the simplest case where the Poiseuille hydrodynamic current in the
channel does not change with time has been analyzed. Hence, it is not possible to use an analogy between the
thermal and diffusion process (without having recourse to calculation) to obtain the resulting expressions for
the time-dependent velocity of a hydrodynamic current. Taking the relaxation of the diffusion process in
plane-parallel and cylindrical channels into account,leads to the following expressions for the limiting dif-

fusion current corresponding to a gradual change in the velocity from zero to an established Poiseuille
profile [6]:

Ip(t) = (8vocob/ro%) 2 ka4 [1 — exp(— Dkn2t)], (1p)
Te(t) = 16mwocors® ZI =4 [1 — exp(— Dp.?t/r?)], (1c)

f==1

where t is the time, v; is the value of the hydrodynamic velocity in the middle of the channel which is estab-
lished due to rapid change, c, is the starting concentration of reacting substance, r, is the half-width of the
channel in the planar case or the radius of the channel in the cylindrical case, b is the cross—-sectional
dimension of the plate of a planar electrode, D is the coefficient of diffusion, kp = (2n+1)7/2r) (n=0, 1,...);
pi are the Bessel null functions of the first type of null order J, (i = 1, 2,...), and the "p" and "c" md:ces
indicate the electrode form. (It is assumed that the electrode length is greater than the length of the com-
plete absorption.)

Formulas (1p) and (lc) permit one to calculate the diffusion currents of an electrode in the case where
the velocity of the hydrodynamic stream changes arbitrarily with time under the condition that the current
itself is always of the Poiseuille type. This will be so if the relaxation time of the hydrodynamic process
Ty is small in comparison with the characteristic time of the change in the hydrodynamic velocity. In this
case, the diffusion current can be written in the form of a Duhamel [7] integral

|3
1(t) = va(9) 1. (0) + J’ vo(8) L’ (t — B) dE = J‘ vo(8)14' (¢ — E) dE, @

where Ig(t) is the diffusion current caused by a single rapid change in the hydrodynamic velocity equal to
P(t) /v or I°¢)/vg; Te' ¢t — B =dle(z)/dz[z=t—¢.
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Dtylri Let us examine the special case which is important for appli-
84r cations where the hydrodynamic velocity changes instantaneously from
% /,/_ zero to an established Poiseuille profile with a velocity in the middle

; of the canal of v,H and then decreases with time according to the ex-
%ﬂ ponential law v, (t) =voHexp t/T), where T is the characteristic time
which depends on the construction parameters of the system (T > T
4 It is apparent that the response of the I(t) system to the v,(t) signal

! will initially increase and then decrease to zero; however, depending
-1 7 ! 2 J on the ratio between T and 7p different processes will dominate on the

portions of growth and increase of current. (pis the characteristic
Fig. 1 time of the diffusion process.)

For the limiting diffusion current of an electrode occupying both
walls of a plane-parallel channel at a distance 2r, from each other, we

¥ 2
ok L obtain with the help of Egs. (1p) and (2)

1 = (8vgcobD/ro) E k2 (Dk,? — 1/T)~' [exp(— t/T) — exp(— Dk,2)]. ()

&t ) n=0
H
e : Because of the rapid convergence of series (3) the fundamental
contribution to I gives the first term of the series I, corresponding to
4 7 ; n 3 n = 0 and the characteristic time of the diffusion process is equal to
log Tp = 1/Dky* = 1,%/2.47 D. When T ~ T both the transition diffusion
Fig. 2 process and the decrease with time of the hydrodynamic velocity for

all t have a comparable effect on I. When T > Tp the increase in I(t)

is associated with the relaxation of the diffusion process which is
established before the exponential attenuation of the hydrodynamic flow, which determines the subsequent
decrease in I(t) with characteristic time T, shows up appreciably. However, if T < D ut T > -rp}, at small
times t =T the increase in I(t) is due to an increase in the contact area of the electrode with the concen-
trated electrolyte introduced into the channel of the hydrodynamic current, at times comparable to T de-
pletion of the electrolyte introduced into the channel begins to show up because of diffusion to the electrode,
and the current decreases with characteristic time .

When Tp > 7, series (3) takes on the form

I = (8vo¥egh/ry?) 2 kytlexp(—t/T)— exp(— Dk, 2t)].

i =0

Using the asymptotic formula for response to the rapid increase in the hydrodynamic velocity [6],we have
I=1Pexp (—t/T) — 0,99 exp (—t /)], @)

where IoP = (4/3)brycovH is the steady current of complete absorption corresponding to v,H. On the basis
of the estimate in [6] one can assume that expression (4) describes the diffusion current in the case where
T > 7, with an error of less than 1% when t > 0.01 I'i]z/D.

The diffusion current can be approximately described by the first term I, of series (3) at any ratio
between T and

I = 1,32brocove™(T [ tp) (e — e~%%) [ (T [tp — 1). 5)
The maximum current is attained when t = t* = T In y/ty—1) (wherey = T/7 and is equal to

Imax e ?,32()3‘0()[}!}0“’\)_1"'“‘_”. {5')'

When y =1 the expansion of the indeterminacy in (5) gives

1 |y—1 = 1,32brocove™ (¢t / T) exp (—t / T).
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log it The maximum of this expression is attained whent = T and, as followS
20} from (5'), is equal to Imax|y=1 = 0.49 bryvye H.
rollipe The error in the approximation with the help of the first term I, of
L2t series (3) increases with increasing t,since the relative contribution of the
M: ! successive terms of the series increases. When t—0 the expression for the
M: total contribution @ (t) =°§In of all the successive terms of the series to the
2 n=1
i S e contribution I, (t) converges to a maximum value & which is determined
, , 90 14 ;
—M[ ‘5[5 from the equality
SF Z
-0.8F o0 |
i v =[(Y, arasar)/ (aroae |
log t¥i* ﬂZI_I / iRl £z
Fig. 3

The maximum error in A* turns out to be independent of y and is 23%.
However, this error is present only at small t and, as a whole, the change
in the current with time is described considerably more accurately with the aid of (5). Formula (5) in-
troduces the error A < A* at times which are greater than a certain value dependent on A and v: ot >, ).
Figure 1 shows two curves of t, values reduced to r,D as a function of logy. Curve 1 corresponds to the
error A = 2%, while curve 2 corresponds to the error A=5%. These curves are the solutions of the equation
I)A =I; with corresponding A. (One can disregard the contribution of I, when n = 2 in the v interval given

in Fig. 1.)

2. In the case of a cylindrical channel of radius r, with the help of (1c) and (2) we obtained

1= 165wyc,D Z tn=2[Dpn2/re? — 4/T]-'[exp(— #/T) — exp(— Dy, t/re?)]. 6)

n=1

for the limiting diffusion current of the electrode. For null p, Bessel functions Jy, when n = 2,0ne can use
the asymptotic p,, =~ m(4n—1)/4 from which it is apparent that series (6) converges rapidly, and the first
term I; of series (6) which corresponds to n = 1 introduces a fundamental contribution to I. The character—
istic time of the diffusion process is 7,¢ = r,¥Du,* = r;%/5.8 D.

When T > ¢, using the results of [6], we obtain
I=1C[exp (—t/T) —096exp (—t/ TDC}], 7)

where I{,C = ﬁrﬂzcnvoﬁ/z is the steady current of complete absorption. According to the estimate in [6],one
can assume that formula (7) is accurate with an error less than 1% when t >0.05 r,¥D. The diffusion cur-
rent at any ratio between T and 7€ is approximately described by the first term I; of series (6)

I=1,50r%cove™ (T'/tp ) (64T — e~:%) [ (T/tp" — 1). (8)
When t = t*=T In o/ (@ —1) (where o =T/TDC) the diffusion current reaches the maximum value

Ima_x =1,50 rocougtag—the—1),

8"

When a = 1, expanding the indeterminacy in (8) we have
I o= = 1,50 ro%covo™ (¢ / T)exp(—t [ T).

When t =T the current I|, -, reaches a maximum which, according to (8'), is equal to Ly axlg = 1 = 0,55
2 H -
ro L

The error in approximation (8) increases with decreasing t. When t — 0 it converges to a maximum
value A*, which is found from the equality

& = [(X, aresae) / carjan i

n=2
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where I, is the term of series (6) corresponding to n. The error in A* is independent of @ and is 44%, If
in addition to Ij,one also takes the second term of the series I, into account

1, = 1.65v,"c.DT [exp(—1t | T) — exp(—30.5D¢ | ry*) ] / (30.3DT [ r,* — 1),

the error in A* decreases to 20%. Formula (8) introduces an error A < A* when t > t,(A, a). Figure 2 shows
two curves of t, values reduced to r)¥D as a function of log a. Curve 1 corresponds to the error A = 5%,
while Curve 2 corresponds to the error A = 10%. These curves are the solution of the equation LA =1, with
corresponding A,

3. Having experimentally measured the dependence of the electrode current on the time I(t) during
gradual external perturbation for a slotted system with an exponentially attenuating hydrodynamic flow and
having used the previously obtained formula for the diffusion current, one can determine the values of both
characteristic times (T and 7)) of the slotted system.

Let us introduce into our examination the parameter g which is readily found from the experimental
I(t) curve

= jf(f)dt; P = I[(z)dt;
ou o 1] i
where = J'[(;}dg; P = j!(t)dﬁ; and t* is the time corresponding to the maximum of the I(t) curve. Since
o i* i

expressions (5) and (8) have the same functional form, calculation of 8 both with the aid of (5) and with (8)
leads to the same result, viz.,

= T —ap) | (Te *IT — qpe-Fiity), (9)
An expression equally suitable for planar and cylindrical channels which reduces to the form

f‘:TTp{T""TD)_i In (T;‘ITD}. (10)
was attained above for t¥*,

Having solved the system of two transcendental equations (9) and (10) relative to T and Tjy,0ne can
obtain the values of the characteristic times. Let us note, however, that system (9)-(10) is invariant with
respect to the substitution T — Tpand 7p— T and it hence follows that it is impossible to show to which
process corresponds each of the two times found on the basis of (9)-(10): one can only speak of longer (t!)
and shorter (tS) characteristic times. The region of physically attainable B values lies between the minimum
value fmin =0.736 corresponding to the case t! = t5 (I =) and the maximum value By = 1 corresponding
to the case 'A%~ . When Bmin < B < Bmax there is a solution of system (9)-(10) which is different
from the trivial solution T =y =t.* The values of the common logarithms (t' /t*) (curve 1) and log (t3/t*)
(curve 2) obtained as a result of graphical solution of the system of equations(9)-(10)are presented in Fig, 3.

In order to determine which of the times t! and ¢S corresponds to T and which to T, one can either
theoretically estimate one of the times or find the characteristic times of attenutation of the hydrodynamic
current from an independent experiment. Practically speaking this is easy to accumplish. Let us note that
expressions (5') and (8') for maximum current are not invariant relative to the substitution T — Tpand T— T,
but the abundance of additional parameters complicates the practical use of (5")-(8") for determiningTandTD.
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