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The mechanism of electrochemical electron-transfer reactions, hydrogen-ion discharge
reactions, and more complex processes accompanied by change in the internal struc-
ture of the reagents are discussed. It is shown that the activation factor in the probabil-
ity of the elementary event in the reaction is determined by reorganization of classical
degrees of freedom in the system. The change in the state of the quantum parts of the
system determines the magnitude of the preexponential factor. For a certain type of
reaction the possibility of existence of a minimum activation energy differing from zero
was discovered.

The purpose of the present work was to investigate the general relationships governing electro-
chemical processes which take place in the absence of diffusion limitations, The most consistent phenomeno-
logical theory of retarded discharge has been developed in the papers by Frumkin [1]. In this theory the
ratio between the activation energy and the heat of reaction, established experimentally by Bronsted for
homogeneous reactions in solution, was applied to the examination of electrode processes for the firsttime,
Attempts were subsequently made by various authors to formulate a microscopic theory of electrode re-
actions (electron-exchange processes, hydrogen-ion discharge) which were based on the theory of absolute
reaction rates and certain quantum-mechanical considerations [2, 3]. A shortcoming of the early theoreti-
cal examinations of the elementary event in the electrochemical process was the lack of systematic allow-
ance for the substantial effect which a polar solvent has on the discharge rate and for the role of the con-
tinuous energy spectrum of the electrons in the electrode.

In recent years a quantum-mechanical theory has been developed for electron-transfer reactions [4-7]
and has subsequently been extended to the case of hydrogen-ion discharge [7, 8]and more complex processes
accompanied by change in the internal structure of the reagents [9-11]. Through this it was possible to
achieve considerable progress in understanding the physical mechanism of the elementary event and in ob-
taining quantitative results during calculation of the current and other kinetic parameters. The present
paper will set out the fundamental physical premises and conclusions of this theory.

Subsequently we will consider the charges of the individual atoms throughout to be uncorrelated with
each other., Consequently, the total discharge current can be represented as the sum of the currents aris-
ing from discharge of the individual ions. In addition, for simplicity we will assume that the ¥, effect is
absent, i,e., that the whole potential drop in the electrolyte is concentrated in the Helmholtz layer. Amodel
of the system, within the scope of which it has been possible to make a quantum-mechanical calculation,
will be examined below. (As shown in [12-14], rigid phenomenological examination confirms the principal
conclusions of quantum theory based on the model given below.)

Solvent, One of the important parts of the reacting system is the polar solvent, In the theory being
expounded a continuous model is adopted where the medium is described by a specific dipole moment (po-
larization) #(r, t) which varies in space and time, Within the scope of the model under examination [15] all
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the characteristics of the polar solvent can be expressed in terms of
the complex dielectric constant € (k, w), which determines the char-
acter of the propagation of polarization waves with wavelengthA=21/k
: (k is the wave vector) and frequency w in the medium. Polarization #
z which varies with time can be represented in the form of a set of
harmonically vibrating oscillators, characterized by frequencies oy
[T and normal coordinates q;. The frequencies of the oscillators w;
: coincide with those longitudinal electromagnetic field frequencies-
A which are strongly absorbed in the given polar medium, i.e., are
[; oi Tor q determined by an imaginary part of the dielectric constant Im &

(k, w). In the general case the electrochemical charge on the elec-

Fig. 1 trode is calculated by taking account of the whole range of fre-

quencies, but for simplicity below we will use a single effective
frequency wy. In order of magnitude the frequency w, is close to
the reciporocal Debye relaxation time 7, which for water amounts
to about 107! sec,

The potential energy of the solvent, due to deviation of the polarization from the equilibrium value
(equal to zero in the absence of external charges), depends on the polarization value, i.e., on the normal
coordinates ¢. Since the number of normal coordinates describing the polarization of unit volume of solvent
is macroscopically large, the potential energy surface as a function of q is substantially multivariate. How-
ever, for simplicity, we will interpret the results of the theory on schematic one-dimensional potential
curves for U(g) (Fig. 1). When the reacting particles are introduced into the solvent interaction of their
charges with the medium leads to displacement of the equilibrium coordinate q =0 to a new position q =qy
and to change (related to solvation of the ion) in the equilibrium energy in the medium — ion system. The
displacement of the equilibrium coordinate q, and the equilibrium energy J depend on the characteristics
of the solvent and the charge distribution in the ions and differs for the initial and final states (curves
i and f).

As will be seen from what follows, an important parameter of the theory is the energy of repolariza-
tion of the solvent E,, which represents the work required (at one of the potential surfaces) to change the
polarization of the medium from the equilibrium value corresponding to the initial reagent tothe equilibrium
value corresponding to the final products (Fig, 1). From this it follows that Eg is determined both by the
characteristics of the solvent and by the redistribution of charge during the reaction. Accurate calcula-
tion of the Eg value requires a knowledge of the dependence of the dielectric constant on the wave vector
k; which so far has been little investigated, and it is therefore reasonable to regard Eg as an empirical

parameter which can be determined from experimental data. The value of Eg can be determined by means
of the following equation [4-6]:

E, = ! d . D D)2 d
=m(m—7)f @-pa @

where £, and £g are the optical and static dielectric constants, and D; and Df are the inductions in the
initial and final states, created by the reagents and products,

Electrode. The characteristics of the electrode on which the electrochemical reaction takes place
are introduced into the theory mainly in terms of the electron distribution function among the energies n(e)
and the density of the electronic states p(e). In describing the energy distribution of electrons in a metal

it is usual to employ a one-electron approximation, which corresponds to a distribution function of a Fermi
type [16]:

n(e) = {1+ exp[(e —er) [ RTT}. @)

Reagents. To describe the inner state of the molecules and ions participating in the electrochemical
discharge processes, use is made of the widely known (in molecular theory) adiabatic approximation (the
Born —Oppenheimer approximation) [12]. Within the scope of the adiabatic approximation the motion of
heavy particles (nuclei) is described by the concept of electronic terms which represent the effective po-
tential energies of the nuclei averaged over the electronic state, In the general case, for quantitative cal-
culation of the electrochemical discharge rate in complex ions, it is necessary to know the geometrical
configuration of the ions participating in the process, all the characteristic frequencies of the molecular
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vibrations in the initial and final states, and also the energies of the chemical bonds. The calculation sim-
plifies substantially in some simple cases where it is known that the majority of the molecular degrees of
freedom do not change during the process. For example, for hydrogen-ion discharge satisfactory results
are obtained in some cases by considering the vibrations of the proton only along one valence bond.

The intramolecular vibrations in the reagents can usually be considered fo be harmonic. In other
cases, when this approximation proves inadequate, other more accurate potential curves (e.g., the Morse
potential) can be used for the potential energy of the intramolecular vibrations. It should be noted that if
the reacting ion forms a stable chemical bond with the nearest solvent molecules (i.e., a complex) then the
reagent should be taken to mean the whole cpmplex, including the ion and the solvent molecules coordinated
around it.

Transfer Probability and Current Density

The elementary event in an electrochemical process is accompanied by the transfer of one or sev-
eral electrons from the electrode to the discharging particle or vice versa. Below for the sake of definite-
ness we will only consider a cathodic process at a metal electrode. Since an electron which participates
in a cathodic process can be at any energy level in the metal, the expression for the cathodic current in
the case of a one-electron process has the following form [16]:

i=ef(c) [Wi(e)n(e)p(e)de, S

where f (cg) is a function expressing the dependence of the electrochemical discharge rate on the concen-
tration of the reagents, and Wif is the probability of the elementary event of the reaction in unit time ac-
companied by transfer of an electron from a certain energy level €.

As known, the method usually adopted in the theory of absolute reaction rates for calculating the re-
action rate constant involves construction of the full potential energy surface of the system, i.e., the elec-
tronic term U€. In the case of a reaction in a polar medium the U® term represents the full energy of the
whole system with fixed values for the q coordinates describing the polarization state of the solvent and
for the R coordinates of all the reagents participating in the reaction. In the theory of absolute reaction
rates in its standard form it is assumed that motion of the system over the surface U®(R, q) during the
reaction process is classical, Such a description does in fact correspond to breaking down of the full sys-
tem into two subsystems — a quantum (electron) and a classical (all remaining particles) system, It must
be emphasized that the assumption, made in the theory of absolute reaction rates, that the intramolecular
degrees of freedom can be regarded as classical is completely unfounded. Such an assumption is not only
obvious but in a number of cases, as shown by calculation, is also not justified [8, 9, 11].

Quantum calculation [12] has shown that the classical or quantum behavior of one or the other degree
of freedom is largely determined by the magnitude of the excitation energy AE, i.e., the frequencies of the
intramolecular vibrations (AE =ﬁwm) and the characteristic frequencies of the fluctuations in the polariza-
tion of the solvent (AE =hwj,). It follows from the theory that the vibrational degree of freedom can be con-
sidered to be classical if the corresponding excitation energy is small in comparison with the thermal
energy kT:

The degree of freedom for which the opposite inequality is fulfilled,

AE, = hoq ST, )

should be regarded as quantum, Thus, for example, in the majority of chemical reactions the proton acts
as a quantum particle, since the frequencies of the vibrations of the proton in chemical compounds satisfy
the following inequality:

@ ~ 10% sec~t > kT / f.

The main conclusion of the quantum theory can be formulated as follows: The whole system should
be divided into two subsystems, i.e., a quantum subsystem (electron and intramolecular degrees of freedom,
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having frequencies of w>KkT/h) and a classical subsystem (solvent and molecular degrees of freedom, char-
acterized by excitation energies of AE <kT); having fixed the state of the quantum subsystem it is necessary
to determine the probability of transition in the classical subsystem. As shown by calculation, the latter
has the Arrhenius form

Wrmn () = Amne-EmrenT, o
where m and n are the numbers of fixed vibrational excited levels of the quantum subsystem in the initial
and final states. In order to determine the "partial™ activation energy E™MDN it is necessary to construct
the potential energy surface for the initial and final states as a function of the coordinates of the classical
subsystem alone, by including the energuas of the quantum subsystem in the "partial™ thermal effect AJTOI,
On such surfaces the activation energy g™ {a) will correspond to the distance from the minimum at the
initial surface to the "saddle" point at the intersection of the initial and final surfaces. The meaning of
the preexponential factor in Eq. (6) will be discussed a little later. The total probability of an elementary
event involving participation of an electron which before discharge of the ion is at a fixed level € in the
electrode can be obtained if WMD(e) is summed over all the quantum indices of the final state n and aver-
aged statistically among the initial states m:

Wi(e)= 2 Am,ﬂe--Em“{s)mTpm‘

m,n

(7

where Pm is the Gibbs distribution function among the energies of the initial state.

One of the important conclusions of the theory lies in the fact that each terrn of the sum in Eq. (7)
depends only on the corresponding difference AJ™"=J9—J0+ e, — £y, where J and J. are the minimum
energies at the potential surfaces of the final and initial states with allowance for the energy of the zero-
point vibrations of the quantum subsystem, and £, and &4, are the excitation energies of the quantum sub-
system measured from the energies of the ground state, Here it is found that the total probability of the
transition W;r depends only on the difference AJ?, Since the energy of the initial state contains the energy

of the electron in the metal £ — ep, where ¢ is the electrode potential, the value of AJ ® can be represented
in the following form:

QP=MF°+ (EF—B) —en, (8}
where £ is the Fermi level of the electron in the metal, 7 is the overpotential, and AJ F° corresponds to
the difference in the minimum energies of the final and initial states. When the electron is at the Fermi

level the potential of the electrode is equal to the equilibrium value, and the quantum vibrational levels
(Aw >KT) in the initial and final states are not excited.

We will assume that the quantum subsystem is in an unexcited level both in the initial and the final
states. Here we will consider only one term in Ed. (7), corresponding to m=n=0, and E° (¢, n) is the
activation energy of the transition, corresponding to the energy of the electron £ and the overpotential 7.
For the sake of specificity the electron-transfer reaction and hydrogen-ion discharge can be regarded as
examples, assuming that in the course of these reactions the transition is not accompanied by substantial
changes in the other parts of the molecules, In these reactions the classical subsystem which is reorgan-
ized in the course of the discharge is only the solvent. Therefore the initial and final potential energy
surfaces have the same form as in Fig. 1, and the following expression can be written for ng”:

Ey"*=(E, + AI)Y/ (4E,), ©)
where Eg is the energy for reorganization of the solvent, which can be evaluated from Eq, (1). The AJ0
value for the hydrogen-ion discharge reaction includes the difference of the zero-point vibration energies

of the proton in the final and initial states. If the reactions under consideration involve not only repolariza-
tion of the solvent but also rearrangement of the other classical degrees of freedom, in addition to Eg the
total energy of reorganization will contain a contribution from the reorganization of these classical de-
grees of freedom E., i.e.,

Etﬂt L) Ea + Er. (10)
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Here it is possible to obtain an expression for the activation energy 191
from Eq. (9) by formal substitution of Eg by E¢pt. In order to calculate
Er it is necessary to make use of spectroscopic data on the intramolecu-
lar vibrational frequencies and on the structure of the molecules.

The examples of reactions given above are relatively simple, In
the more general case part of the degrees of freedom can change during
the reaction from quantum to classical degrees of freedom and vice versa.
As an example, we will examine the reaction in which, as a result of the
formation of a chemical bond, a quantum degree of freedom appears and
a classical degree of freedom disappears. Such a situation, let us say,
can arise when a particle which is vibrating in a solution with "classical"
frequency of w <kT/h passes into the adsorbed state on the electrode and
forms with the latter a chemical bond characterized by a "quantum® fre-
quency of w >kT /h. Since the potential energy surface shouldbe regarded
as a function of the coordinates of only the classical subsystem, in the
process under examination the surfaces of the initial and final states have
different numbers of measurements. Such surfaces are shown diagrama-

® -"'qm.r;f 5\; tically in Fig. 2, where R is the coordinate of the particle which was ini-
- tially in the solution and during the reaction forms a chemical bond, and

q denotes one of the generalized coordinates describing the state of the
o1 F-s0 solvent. In this case, as shown by calculation [11], the activation energy

Fig. 3 takes the following form:

E% = (E3+N“——Er)2f(4l‘?g) +E:, (11)
where E,. is the energy of reorganization corresponding to the "disappearing" classical degree of freedom.
It should be noted that the activation energy E;’“, determined by Eq. (11), does not become equal to zero

at any AJ? value, Thus, in the general case, the minimum activation energy of the process EY%in differs
from zero.

We will now pass on to calculation of the current. By substituting Eq. (7) in Eq. (3), we obtain
o L _E™™ (A7 yRT §
i Zamn Ze_f(c)_[ Amne n(e)p(e)de e
mn mn

We will examine the expression for the partial current i%0  1n calculating the integral in Eq. (12), of con-
siderable importance is competition between the two functions — the exponential function (activation factor)
and the Fermi [n(e)] — since p(g) is a very smooth function [12]. The activation energy decreases with
increase in the energy of the electron, and this leads to an increase in the exponential factor. On the other
hand, the population of the highly excited level [n(e)] is small. This leads to the occurrence of a sharp
maximum in the expression under the integral sign in Eq. (12) at a certain £* value, and a contribution

to the current is made by only a narrow range of electronic levels in the metal. According to Eq. (12),

¢* can be determined from the following condition:

L. Amn(E) e Rl dEsF*“\
; de Toide et AATEY st (13)
The o value, determined by the relationship
5o _ g%
a®0(e,n)=dEa /de, (14)

can be regarded as a "partial” microscopic transfer coefficient, and Eq. (14) itself can be regarded as a
microscopic Bronsted equation for electrode processes. As the calculation shows,the dependence of the
macroscopic current i’ on the overpotentialis characterized by the value

. 0
dEY’ i dEy

00(e*) = 0% —
a?(e*)= a®¥ = 3
( ) de g=e* dET] s=s!

(15)
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This last equation serves as a generalization of the normal Bronsted equation for electrochemical processes.
From Egs. (13) and (15) it follows that if n(¢) is the Fermi distribution function, n(e*)=1—a%%% _ Since n
varies between 0 and 1, the corresponding values of a%% lie between 0 and 1. The various energy states
of the electrons make a contribution to the total current, depending on the value of the overpotential n. With
low overpotentials,

en < AT+ E,—Eqoi » (16)
it is found that €* > ep, n* =1, and a¥%~1_ Here the effective activation energy has the following form:

E'=AJ*—en +Emin. (17)
where ngl‘;l is the minimum activation energy for the reverse process, We will call this region of over-
potentials the barrierless region. This name is to some extent arbitrary since, (as seen from Fig. 2) al-

though the transfer coefficient %% ip this region is equal to unity, generally speaking nevertheless the
system has to overcome an additional activation barrier. In the region of overpotentials where

JAJ*— Elpin—en] <E,, 18)

it is found that £ *= ey and o%%* varies smoothly from 1 to 0. We will call this region of overpotentials
the normal region, At high overpotentials where

en > Alz?— Ea?;"r’lin —E,, (19)

e*¥< e, n*= 1, and a%* =0, while the activation energy does not depend on the overpotential and coincides
with the lowest possible value. The corresponding region of overpotentials can be called arbitrarily the
activationless region. The existence of a minimum activation energy differing from zero for reactions dur-
ing which one or several new quantum degrees of freedom are formed is of fundamental significance, since
at Ea, min=0 the act_ivationless current can be greater than the limiting diffusion current, as a result of
which the activationless region will not be observed experimentally.

We notice that the dependence of the current on overpotential in the barrierless and activationless
regions is universal. In the normal region the dependenceof the current on overpotential differs for differ-
ent processes and depends on the specific form of the relationship between the activation energy and AJ 4
As an illustration, Fig. 3 shows the polarization curve for discharge of hydrogen ions, calculated by means

of an electronic computer for a wide range of overpotentials without allowance for excited states of the
proton.

The contribution from transitions involving excited states of the quantum subsystem to the total cur-
rent i depends on the magnitude of the activation energies E™: 1 gnd the preexponential factors A™: ™, The
activation energy of a process in which a quantum subsystem changes from an excited initial m-th state to

an excited final n-th state in practice only differs from the activation energy E}'? in the replacement of
AJ? by Ag™, 1,

The preexponential factors A™: ™ are proportional to the transmission coefficients ®™ 2, which de-
termine the probability of transition of the system from the initial state when the system passes through
the saddle point at the intersection of the potential energy surfaces of the initial and final states. The values

of the transmission coefficients depend substantially on the overlapping of the wave functions of the quantum
subsystem,

In Fig. 3 the polarization curve calculated with allowance for the excited states of the proton during
the hydrogen-ion discharge process is shown by the dotted line. As seen from the figure, the contribution
from the excited states is only appreciable in the barrierless and activationless regions., Analysis shows
that the role of excited states of the quantum subsystem is usually not very substantial in electrode reac-
tions. On the other hand, in homogeneous reactions with charge transfer, where there is no continuous
electronic spectrum, the existence of excited states in the quantum subsystem is very important and sub-
stantially determines the behavior of the activation energy in the barrierless and activationless regions.

554




e

The ideas set out above for the mechanism of electrode reactions differ substantially from the con-
siderations of electrode processes based on the theory of absolute reaction rates, The reason for this dif-
ference has already been indicated above when seeking the activation energy of the reactions., Moreover,
unlike the theory of absolute reactian rates where the transmission coefficient % is a fairly indefinite quan-
tity, in the theory set out in the present work the transmission coefficient has a precise physical meaning
and can be calculated if the wave functions of the quantum subsystem are known, This is of great import-
ance for comparison of theory with experiment and for selection of the right mechanism for the process.
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