ADSORPTION OF PERCHLORATE IONS ON PLATINUM AND RHODIUM ELECTRODES

S. Ya. Vasina and O. A. Petrii

UDC 541, 135, 5-183: 546

Although a great number of electrochemical investigations (see, e.g., [1-4]) were devoted to the behavior of platinum in solutions of perchloric acid, no direct data are available as to the adsorption of ClO_4^- anions on such an electrode. We studied the adsorption of perchloric acid on Pt/Pt and rhodium-plated electrodes.

The measurements were carried out with the help of the methods of charging curves, adsorption curves [5], isoelectric potential shifts [6], and the potentiostatic method, at $20 \pm 1^{\circ}$ C. In our investigations we used a P-5611 potentiostat. The potentials φ_{r} were referred to a reversible hydrogen electrode in the same solution. The preparation of the electrodes is described in [7, 8]. The true surface of the Pt/Pt electrode was $8.4-9.1 \text{ m}^2$, that of the rhodium electrode was 0.75 and $3.9-4.1 \text{ m}^2$; the solution and the operating parts of the cell had a volume of 20 cm^3 . Before the experiment the electrodes were subject to anodic and cathodic polishing in 0.1 N H₂SO₄ and then washed with bidistillate.

The "chemically pure" perchloric acid was carefully purified. It was either distilled twice in vacuo or frozen out three times (in some cases the acid was distilled and then frozen out). For this purpose, in a special vessel a portion of HClO₄ was frozen out to one half in a mixture of dry ice and acetone. The nonfrozen acid was poured off, the residue was melted and the process was repeated. In addition to this, in special experiments we used HClO₄ solutions purified by means of activated carbon which had been kept for a long time in contact with hydrogen-saturated Pt/Pt grids or subject to cathodic purification on a mercury electrode.* The method used to purify HClO₄ could not be observed to exert great influence on the results obtained; most of the experiments were made with HClO₄ purified by freezing. A qualitative analysis showed that the acid used did not contain any other chlorine compounds other than ClO₄.

Figure 1 shows the charging curves for platinum and rhodium in 0.1 N HClO₄ and H₂SO₄. The anodic branch of the rhodium charging curve in HClO₄ is shorter than the anodic branch in H₂SO₄; the cathodic branch of this curve, however, shows a particularly strong distortion. Considering the drop of the electrode potential to $\varphi_r = 0$ in the solution, we could prove the presence of Cl⁻ ions using the reaction with AgNO₃. This indicates the reduction of the ClO₄⁻ ions to Cl⁻ on rhodium during the measurements of the slow charging curves. In order to determine the φ_r value at which the reduction of ClO₄⁻ sets in, a rhodium electrode washed with bidistillate on air was submerged in a HClO₄ solution (blown through by argon) and with the help of the potentiostat a potential of $\varphi_r = 0.6$ V was set. Apart from ClO₄⁻ no other chlorine compounds could be detected in the solution. After the stabilization of the potential we measured the cathodic charging curve. This curve is longer than that obtained under similar conditions in 0.1 N H₂SO₄ ($\Delta Q = 0.95$ C).

After the cathodic charging curve in 0.1 N HClO₄ was recorded, we applied a method of argentometric amperometric titration [9] to determine the Cl⁻ ion concentration; we obtained a value of 0.7 · 10⁻⁴ g-eq./liter†. The formation of this quantity of Cl⁻ ions consumes about 1.07 C of electricity so that the difference in the quantity of electricity calculated from curves 4 and 5 of Fig. 1 is entirely due to the reduction of ClO₄⁻ to Cl⁻. From curve 5 we can conclude that the reduction of ClO₄⁻ on Rh begins at $\varphi_{\Gamma} \in 0.55$ V. With these φ_{Γ} values no hydro-

^{*}We learned from I. A. Bagotskaya that the latter procedure permits the obtaining of reproducible values for the hydrogen overvoltage on gallium in perchloric acid solutions, \dagger With this method the Cl⁻ion concentration in a solution can be determined with an accuracy of \pm 1· 10⁻⁵ g-eq./liter.

M. V. Lomonosov Moscow State University. Translated from Élektrokhimiya, Vol. 6, No. 2, pp. 242-246, February, 1970. Original article submitted May 15, 1969.

^{© 1970} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

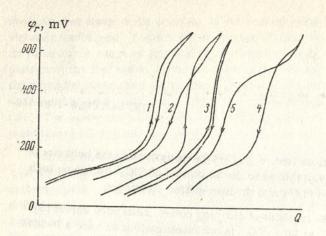


Fig. 1. Charging curves for rhodium-plated (1, 2, 4, 5) and Pt/Pt (3) electrodes in 0.1 N HClO₄ (2, 3, 5) and 0.1 N H₂SO₄ (1, 4); i = 0.1 μ A/cm² of true surface. The arrows indicate the direction of recording.

gen is adsorbed. The reduction process can be assumed to take place according to an electrochemical mechanism.

Similar measurements were also made with a Pt/Pt electrode. In this case it was not possible to conclude the reduction of ClO_4^- ions immediately from the charging curve measurements (Fig. 1); this is due to the considerably lower rate of this process on Pt. In fact, if a Pt/Pt electrode in a HClO_4 solution is kept at $\varphi_{\Gamma} = 0.3$ -0.4 V for 30 min and φ_{Γ} is then reduced to zero (by cathodic polarization or blowing through of hydrogen), Cl^- ions can be detected in the solution.

To study the process of $\mathrm{ClO_4}^-$ reduction in detail we carried out the following measurements. The electrode was kept at a chosen value of φ_{r} in a $\mathrm{HClO_4}$ solution. After stabilization of the potential, part of the solution was poured off and analyzed for possible reduction products of $\mathrm{ClO_4}^-$. In the whole interval of φ_{r} investigated it was not possible to detect any trace of $\mathrm{ClO_4}^-$ reduction products in the solution. Then hydrogen was blown through the solution and after having reached $\varphi_{\mathrm{r}}=0$ the solution was

again analyzed. In the solution we only discovered ClO₄ and Cl ions. * At the same time we determined the variation of the hydrogen ion concentration in the solution. The ClO₄ ion reduction

$$ClO_4^- + 8H^+ + 8e^- \rightarrow Cl^- + 4H_2O$$

can be represented in the form

$$ClO_4^- + 4H_2 \rightarrow Cl^- + 4H_2O$$
.

Consequently, the pH variation of the solution arising when hydrogen is blown through can only be due to the difference in the quantity of $HClO_4$ adsorbed with the initial φ_T and $\varphi_T = 0$, i.e., in spite of the reduction reaction the adsorption of $HClO_4$ on the electrode can be determined. These experiments permit a direct comparison between the $HClO_4$ adsorption and the quantity of Cl^- ions formed in its reduction. In the presence of excessive indifferent electrolyte the electrode surface charge can be determined from the variation of the H^+ ion concentration during the formation of the double layer [11].

Figure 2 illustrates the results of the experiments described above. On Rh the quantity of C1 ions obtained in the reduction of $\mathrm{HClO_4}$ is virtually equal to the adsorption of acid up to $\varphi_\Gamma\approx 0.5\,\mathrm{V}$. With higher anodic potentials (φ_Γ) the acid adsorption decreases owing to the adsorption of oxygen on the electrode, the C1 ions, however, are found in the same quantity as with the initial value of $\varphi_\Gamma=0.3$ -0.4 V. This result is due to the fact that, when hydrogen is blown through the solution, the electrode potential passes through the values of 0.3-0.4 V and the $\mathrm{ClO_4}^-$ ions then adsorbed are reduced to C1. At $\varphi_\Gamma=0$ the adsorption of $\mathrm{HclO_4}$ drops to zero and no C1 ions are discovered in the solution. A comparison of the adsorption of $\mathrm{H_2SO_4}^+$ and $\mathrm{HclO_4}$ (Fig. 2) permit the conclusion that the adsorbabilities of $\mathrm{ClO_4}^-$ and $\mathrm{SO_4}^2$ are almost equal. It is, however, necessary to take into account that the $\mathrm{SO_4}^2$ ions adsorbed are in equilibrium with the ions of the solution, while in the case of $\mathrm{ClO_4}^-$ adsorption there is no such equilibrium. Other experiments showed that $\mathrm{ClO_4}^-$ is adsorbed less strongly. Thus, if the electrode potential is reduced to $\varphi_\Gamma=0.6\,\mathrm{V}$ in $0.01\,\mathrm{N}$ $\mathrm{H_2SO_4}$ and the solution is then replaced by $1\,\mathrm{N}$ $\mathrm{HclO_4}$ and blown through by hydrogen, the quantity of C1 ions discovered in the solution will be lower by an order of magnitude compared with that obtained in the experiments shown in Fig. 2.

This indicates that even small quantities of $SO_4^{\ 2^-}$ ions in the solution hinder the adsorption and reduction of CIO_4^- . The reduction of CIO_4^- virtually cannot be observed in a solution of $I'N \ HCIO_4 + 10^{-4} \ N \ HCl$. Thus we see that foreign anions reduce the rate of reduction of CIO_4^- anions by removing them from the surface layer. On the basis of these results we can reveal an analogy between the processes of reduction of CIO_4^- anions on Rh and Pt and and of $S_2O_3^{\ 2^-}$ anions on Hg [12]: in both cases the reaction rate decreases when we pass over to negative surface

† Data on the adsorption of sulfuric acid on rhodium were obtained by V. V. Topolev.

^{*}The fact that the solution did not contain chlorine compounds of an intermediate valence agrees with data from [10] according to which these compounds are rapidly reduced at these potentials.

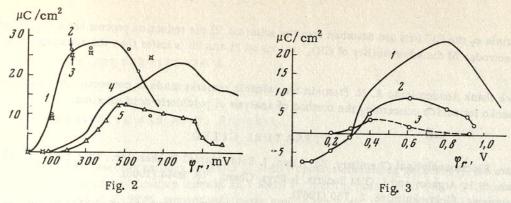


Fig. 2. Dependence of hydrogen ion adsorption (1, 2, 4, 5) and the quantity of chlorine ions (3) formed in the reduction of ClO₄⁻ on the potential of the rhodium (1-3) and the platinum electrode (4, 5) in the following solutions: 1,4) 0.01 N H₂SO₄; 2,3,5) 0.01 N HClO₄.

Fig. 3. Dependence of the surface charge of the Pt/Pt electrode on the potential in $0.01\,\mathrm{N}$ H₂SO₄ + $1\,\mathrm{N}$ Na₂SO₄ (1) (after data from [14]) and in $0.01\,\mathrm{N}$ HClO₄ + $1\,\mathrm{N}$ NaClO₄ (2); dependence of the quantity of chlorine ions (3) formed in the reduction of ClO₄ on the initial potential.

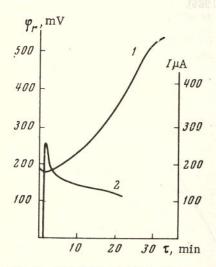


Fig. 4. Potential shift (1) with open circuit and time dependence of current (2) at $\varphi_r = 0.198 \text{ V}$ after replacement of the 0.01 N HClO₄ by 1 N HClO₄ on a rhodium electrode.

charges, and in the presence of anions adsorbed in a specific way. In our case, however, the reduction process can only be influenced by adsorbed ClO₄ anions.

With all potentials the adsorption of $\mathrm{HClO_4}$ on platinum was less intense than the adsorption of $\mathrm{H_2SO_4}$ (Fig. 2), in particular with $\varphi_\Gamma > 0.4$ V. The decrease of $\mathrm{HClO_4}$ adsorption with $\varphi_\Gamma > 0.4$ V indicates that at these potentials adsorbed oxygen is present on the Pt surface in $\mathrm{HClO_4}$ solutions. In agreement with the lower adsorbability of $\mathrm{ClO_4}^-$, the surface charges with anodic φ_Γ are lower than the surface charges in a sodium sulfate solution. According to Fig. 3, only part of the $\mathrm{ClO_4}^-$ ions adsorbed on Pt are reduced down to Cl^- . The decrease of the quantity of Cl^- ions with an initial potential of $\varphi_\Gamma > 0.4$ V is caused by the fact that the $\mathrm{ClO_4}^-$ reduction rate is lower for Pt than for Rh so that, when hydrogen is blown through, not all the adsorbed $\mathrm{ClO_4}^-$ ions can be reduced. If we assume that, in spite of the reduction process taking place, we can speak of a point of zero charge in the $\mathrm{HClO_4}$ solutions, in an acidified solution of sodium perchlorate the latter will be close to the point of zero charge in acidified sulfate (Fig. 3) [13].

We also measured the isoelectric potential shifts caused by a variation of the solution's pH on Rh and Pt electrodes. In the case of $\rm H_2SO_4$ solutions the inceasing $\rm H^+$ ion concentration shifts φ_T toward

the cathodic side. In $HClO_4$ solutions in Rh φ_Γ is initially also shifted to the cathodic side, then it begins slowly to grow; this is caused by the reduction of ClO_4 . Under potentiostatic conditions the appearance of a cathodic current corresponds to this process (Fig. 4). The shift of φ_Γ on Pt accompanying the increase in $HClO_4$ concentration in the hydrogen range of φ_Γ takes place toward the cathodic side, however, the amount of the shift is hardly reproducible and with $\varphi_\Gamma > 0.2$ V it is considerably smaller than in H_2SO_4 solutions.

The measurements also show that the quantity of Cl⁻ ions increases (by 10-15%) with the HClO₄ concentration in the solution (from 0.01 N to 1 N), with the holding time of the electrode at $\varphi_{\rm r}$ = 0.3-0.4 V, and also with a slow periodic variation of $\varphi_{\rm r}$ of the electrode in the interval between 0 and 0.4 V with simultaneous blowing through of argon. When the electrode is kept at $\varphi_{\rm r}$ = 0.4 V, the quantity of Cl⁻ ions then detected does not depend on whether the solution is stirred or not.

From the total of results achieved in our investigations we can draw the following conclusions: 1) The ClO₄⁻ anions adsorbed on Pt at $\phi_r \simeq 200 \div 550~$ mV and on Rh at $\phi_r = 100 - 550~$ mV are reduced to Cl⁻; at higher

cathodic potentials φ_T the C1⁻ ions are desorbed into the solution; 2) the reduction process has a higher rate in the case of a Rh electrode; 3) the adsorbability of ClO₄⁻ anions on Pt and Rh is lower than the adsorbability of SO₄²⁻ anions.

Finally we thank Academician A. N. Frumkin for valuable remarks made in connection with our investigations and L. T. Bugaenko for advice concerning the method of analysis of perchloric acid solutions.

LITERATURE CITED

- 1. S. Gilman, Electroanalytical Chemistry, Ed. Allen, J. Bard, Marcel Dekker, Inc., New York, 2, 111 (1967).
- 2. E. Gileadi, S. D. Argade, and J. O'M Bockris, J. Phys. Chem., 70, 2044 (1966).
- 3. N. A. Balashova, Élektrokhimiya, 3, 750 (1967).
- 4. R. Kh. Burshtein, A. G. Pshenichnikov, and L. A. Shevchenko, Élektrokhimiya, 5, 332 (1969).
- 5. A. N. Shlygin, A. N. Frumkin, and V. Medvedovskii, Acta Physicochim. URSS, 4, 911 (1936).
- 6. A. N. Frumkin, Élektrokhimiya, 2, 387 (1966).
- 7. O. A. Petrii, R. V. Marvet, and A. N. Frumkin, Élektrokhimiya, 3, 116 (1967).
- 8. O. A. Petrii, A. M. Kossaya-Tsybulevskaya, and Yu. M. Tyurin, Élektrokhimiya, 3, 617 (1967).
- 9. J. M. Kolthoff and P. K. Kurde, Analyt. Chem., 23, 1306 (1951).
- 10. A. E. Missan and A. M. Sukhotin, Zh. Neorgan. Khim., 4, 606 (1959).
- 11. A. N. Frumkin and A. N. Shlygin, Izv. Akad. Nauk SSSR, Ser. Khim., 773 (1936).
- 12. P. Delahay, The Double Layer and the Kinetics of Electrode Processes [Russian translation], Mir, Moscow (1967).
- 13. O. A. Petrii, A. N. Frumkin, and Yu. G. Kotlov, Élektrokhimiya, 5, 479 (1969).