# SOVIET ELECTROCHEMISTRY

VOLUME I: Kinetics and Polarography

**VOLUME II: Oxidation and Reduction** 

VOLUME III: Applied

# SOVIET ELECTROCHEMISTRY

(Proceedings of the Fourth Conference on Electrochemistry)

**VOLUME II: Oxidation and Reduction** 



CONSULTANTS BUREAU

NEW YORK

1961

This three-volume set is a complete translation
from the Russian of the original
Proceedings of the Fourth Conference
on Electrochemistry (October 1-6, 1956)
published by the
Academy of Sciences of the USSR Press, Moscow, 1959.
A rearrangement of the original material
has been effected, as explained in the Preface.



## 1961. 2342

EDITORIAL BOARD for the Russian Edition
Academician A.N. Frumkin, Supervisory Editor;
Professor O. A. Esin; S. I. Zhdanov,
Supervisory Secretary; Professor B. N. Krabanov;
Doctor of Chemical Sciences Ya. M. Kolotyrkin;
V. V. Losev; Professor P. D. Lukovtsev; Z. A. Zolov'eva;
Professor V. V. Smender; G. M. Florianovich

Copyright 1961 Consultants Bureau Enterprises, Inc. 227 West 17th St., New York 11, N. Y. All rights reserved

No part of this publication may be reproduced in any form without written permission from the publisher

Printed in the United States of America

#### ACKNOWLEDGMENT

The publishers express their appreciation to Dr. Leonard Nanis of the Stanley-Thompson Laboratories of Columbia University, New York City, New York, for the reorganization of the original Russian material and for the prefatory remarks pertaining to that reorganization.

. 

#### PREFACE VOLUME II

As a matter of publishing expediency the lengthy "Proceedings of the Fourth Soviet Conference on Electro-chemistry" has been divided into three manageable volumes. This procedure has necessitated some rearrangement of the papers as originally grouped under various topic headings.

Fully one fourth of the papers were in one of the ten original sections entitled "The Electrodeposition of Metals." Of these, roughly one third could properly be considered as theoretical in nature, at least by comparison with the balance, which clearly consisted of studies of practical deposition systems. Accordingly, the reduction subdivision of Volume II includes the above-mentioned theoretical electrodeposition papers and also two from "Electrode Processes in Melts" and the two non-polarography papers of the section title "Electrolytic Reduction."

In the oxidation subdivision of Volume II the entire original section "The Mechanism of Electrochemical Oxidation Processes" has been included, together with the section "Metal Passivity and Chemisorbed Layers." To the oxidation group were added two pertinent papers from the section on melts. Also included were two papers dealing with metal dissolution originally located in separate sections.

The original section "Electrode Processes in Melts" has been entirely dispersed within the three volumes in appropriate locations.

The discussions located at the end of each original section have been appropriately relocated in association with the pertinent papers at the end of the subdivisions of the present volumes.

It is hoped that this collection will be useful in supplying an over-all picture of the present-day trends in Soviet electrochemical research, since reported papers are usually dispersed in several chemistry journals in the absence of a journal devoted exclusively to electrochemistry. The usefulness of the collection is enhanced by the inclusion of several papers by leading researchers of other nations.

L. N.

## SOVIET ELECTROCHEMISTRY

#### Volume II

## Table of Contents

| Foreword                                                                                                                                                          | 1           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SECTION 1. ELECTRODEPOSITION                                                                                                                                      | 3           |
| Spiral Growth and Overvoltage During the Electrocrystallization of Silver. R. Kaishev                                                                             | 5           |
| Determination of Faraday Impedance on Solid Electrodes and Stages Determining the Rate of Electrodeposition of Copper. J. O'M. Bockris, W. Mehl, and B. E. Conway | . 12        |
| The Nonuniformity of the Surface of the Electrode and the Mechanism of the Electrode deposition of Metals. A. T. Vagramyan                                        | <b>.</b> 26 |
| Certain Problems in the Theory of the Electrocrystallization of Alloys. Yu. M. Polukarov and K. M. Gorbunova                                                      | 33          |
| Certain Regularities of Electrocrystallization of Metals under the Influence of Alternating  Current. A. A. Sutyagina and K. M. Gorbunova                         | 39          |
| The Kinetics of Nucleation in the Electrodeposition of Metals. R. Kaishev                                                                                         | 45          |
| Kinetics of Simultaneous Discharge of Ions During Electrolytic Deposition of Metals.                                                                              |             |
| Yu. V. Baimakov                                                                                                                                                   | 50          |
| Cathodic Polarization During Electrodeposition of Tin-Nickel Alloy. N. T. Kudryavtsev and  K. M. Tyutin                                                           | 57          |
| Simultaneous Ionic Discharge and the Problem of Preparing High Purity Metals.  V. L. Kheifets and A. L. Rotinyan                                                  | 62          |
| The Role of the Cathode Surface Charge and the Formation of Passive Films in the  Electrodeposition of Metals. A. I. Levin                                        | 69          |
| The Kinetics of the Cathodic Processes in the Electrodeposition of Metals from Aqueous  Solution. A. V. Izmailov                                                  | 74          |
| Separation Coefficient in the Electrocodeposition of Iron-Group Metals. G. A. Tsyganov,  A. I. Chernilovskaya, and A. I. Iosilevich                               | 81          |
| The Neutralization of Metallic Ions at Macrodistances from the Cathode. V. A. Yurkov                                                                              | 85          |
| Mechanism of Electrolytic Deposition of Metals on Passivated Surfaces: L. I. Kadaner and                                                                          |             |
| A. Kh. Masik                                                                                                                                                      | 88          |
| Discussion                                                                                                                                                        | 92          |
| SECTION 2. REDUCTION                                                                                                                                              | 101         |
| Effect of Structural Change in HNO <sub>3</sub> Molecules on the Course of Cathode Polarization of a Platinum Electrode in Nitric Acid Solutions. Stefan Minc     | 103         |
| Mechanism of the Electroreduction of Chromic Acid. D. N. Usachev and A. T. Vagramyan                                                                              | 108         |
| Role of a Metal-Molten Salt Equilibrium in Electrode Processes. L. N. Antipin                                                                                     | 112         |
| Cathode Processes During the Deposition of Thorium from Molten Electrolytes.  M. V. Smirnov and L. D. Yushina                                                     | 115         |

## Table of Contents (continued)

|   | Discussion                                                                                                                                                               | 118         |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | SECTION 3. ELECTROSOLUTION                                                                                                                                               | 121         |
|   | Application of Oscillographic Method in the Investigation of the Kinetics of Electrode  Processes on the Surface of Dissolving Metals. Ya. V. Durdin, L. Kish, and V. I. | 100         |
|   | Kravtsov                                                                                                                                                                 | 123         |
|   | The Mechanism of Anodic Dissolution. R. Odyuber                                                                                                                          | 135         |
|   | SECTION 4. OXYGEN OVERVOLTAGE                                                                                                                                            | 139         |
|   | Mechanism of Oxygen Liberation on Oxide Electrodes. B. N. Kabanov                                                                                                        | 141         |
|   | Effect of Cations on Oxygen Overvoltage. Tibor Erdey-Grúz and Imre Safarik                                                                                               | 145         |
|   | Electrochemical Reactions of Oxygen. A. I. Krasil'shchikov                                                                                                               | 151         |
|   | Investigation of the Mechanism of Some Anodic Processes by a Combination of Electro-<br>chemical and Labelled Atom Methods. M. A. Gerovich and R. I. Kaganovich          | 155         |
|   | Discussion                                                                                                                                                               | 159         |
| , | SECTION 5. OXIDATION                                                                                                                                                     | 161         |
|   | Mechanism of Electrochemical Oxidation. V. I. Veselovskii                                                                                                                | 163         |
|   | Mechanism of Electrooxidation of Some Compounds on Platinum. A. I. Shlygin and G. A. Bogdanovskii                                                                        | 171         |
|   | Mechanism of the Electrolytic Oxidation of Acetone in Alkaline Solutions. V. G. Khomyakov, N. G. Bakhchisaraits'yan, and A. P. Tomilov                                   | <b>17</b> 5 |
|   | Mechanism of Some Irreversible Electrooxidation Reactions. N. E. Khomutov                                                                                                | 179         |
|   | Mechanism of Anodic Discharge in the Electrolysis of a Cryolite-Alumina Melt.  V. P. Mashovets and A. A. Revazyan                                                        | 185         |
|   | Mechanism of the Interaction of Oxygen with a Carbon Anode in Cryolite-Alumina  Melts. S. I. Rempel', L. P. Khodak, and N. A. Anisheva                                   | 192         |
|   | Study of the Mechanism of the Electrochemical Formation of Oxygen Compounds of Chlorine by Anode Polarography. T. S. Filippov and E. I. Yakovleva                        | 194         |
|   | Discussion                                                                                                                                                               | 199         |
|   | SECTION 6. PASSIVITY AND CORROSION                                                                                                                                       | 205         |
|   | A Study of the Mechanism of Corrosion of Iron, Magnesium, Zinc and Aluminum by Means of the Heavy Isotope of Oxygen. A. S. Fomenko, T. M. Abramova, and I. L. Gankina    | 207         |
|   | Activation of Passive Iron. K. F. Bonhoeffer                                                                                                                             | 210         |
|   | The Anodic Passivation of Metals in Aqueous Electrolyte Solutions. Ya. M. Kolotyrkin,  V. M. Knyazheva, and N. Ya. Buné                                                  | 222         |
|   | Investigation of the Passivation of Metals by Oxygen by Measurement of the Contact  Potential Difference and by Electrochemical Methods. R. Kh. Burshtein                | 229         |
|   | Passivity of Iron in Solutions of Oxidants. E. N. Mirolyubov, N. D. Tomashov, and N. P. Zhuk                                                                             | 234         |
|   |                                                                                                                                                                          |             |

#### Table of Contents (continued)

| Some Characteristics of Anodic Dissolution of Metals under Conditions of Local  Passivity. G. S. Vozdvizhenskii | 240 |
|-----------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                 |     |
| Passivity of Iron in Acid Solution. A. M. Sukhotin                                                              | 243 |
| Anode Passivation of Copper and Some of its Alloys in Phosphates. I. V. Borovkov                                | 249 |
| Anode Oxidation of Copper in Hot Concentrated Solutions of Alkali. A. L. L'vov and  A. V. Fortunatov            | 253 |
| Electrochemical Kinetics of Corrosion Processes under Adsorbed Films of Moisture.                               |     |
| N. D. Tomashov and Yu. N. Mikhailovskii                                                                         | 258 |
| Discussion                                                                                                      | 263 |