the transfer of the second beautiful to the second of the second of the second second

The Systems Formed by Perchloric Acid with Acetic Acid and its Chlorine Derivatives

By T. Sumarokova and M. Usanovich

In studying the binary systems formed by acetic acid and its chlorine derivatives with sulphuric acid, the latter was found ¹, ², ³, ⁴, ⁵ to form with these substances with the exception of CCl₃COOH, compounds which should be regarded as acidic sulphates. It seemed of interest to investigate the systems formed by acetic acid and its chlorine derivatives with perchloric acid as it was expected that the chemical interaction would in this case be more distinct than with sulphuric acid and that perchloric acid, being the strongest of all protonic acids⁶, might give rise to a display of basic properties in CCl₃COOH. All attempts to detect the amphoteric character of the last named compound have so far failed.

The present investigation of the systems HClO₄—CHCl₂COOH, HClO₄—CH₂ClCOOH and HClO₄—CH₂COOH, has been carried out with respect to electrical conductance, viscosity and density.

Experimental part

1. Specimens

(a) The perchloric acid was prepared in the same manner as previously.

² Bergius, Z. physik. Chem., 72, 338 (1910).

⁵ M. Usanovich and V. Tartakovskaya, J. Gen. Chem. (Russ.), in press.

⁶ According to K h o d a k o v (C. R. Acad. Sci. URSS, 41, 117, 1943), perchloric acid is 10⁶ times as strong as sulphuric acid.

⁷ M. Usanovich, T. Sumarokova and V. Udovenko, Acta Phys. Chim., 11, 505 (1939).

¹ A. Hantzsch, Z. physik. Chem., 61, 257 (1908).

³ M. Usanovich and A. Naumova, J. Gen. Chem. (Russ.), 5, 712 (1935).

⁴ Tartakowskaya, Bondarenko and Emeljanova, Acta Phys. Chim., 6 609 (1937).

- (b) The trichloracetic acid was recrystallized from a small amount of benzene and then fractionated three times. The fraction with the boiling point 193° at 720 mm Hg pressure was collected and sealed in ampoules.
- (c) The dichloracetic acid, synthesized and carefully purified in the Organic Chemistry Laboratory of the Middle Asia State University, was distilled and sealed in ampoules without additional purification.
- (d) The monochloracetic acid was fractionated three times; the fraction with the boiling point 187° at 729 mm pressure was collected and sealed in ampoules.
- (e) The acetic acid prepared from glacial acetic acid and acetic oxide was subjected to fractional distillation and then fractionally frozen out; the acid with the fusion point 16.5° was sealed in ampoules.

2. Results of measurements

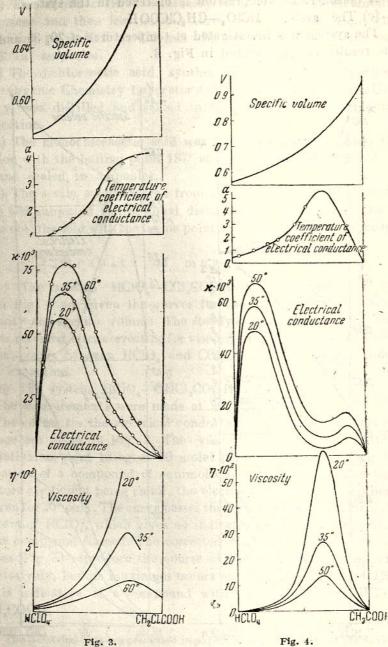
(a) The system HClO₄—CCl₅COOH

In Fig. 1 are given the curves for the electrical conductance, viscosity and specific volume. The steady course of the conductance curves retained after correcting for viscosity evidences that no interaction occurs between HClO₄ and CCl₃COOH. The system undergoes expansion.

(h) The system HClO,-CHCl,COOH

The measurements were made at 20, 35 and 50°.


The curves for the electrical conductance, viscosity and specific volume are given in Fig. 2. The viscosity curves are S-shaped, the inflexion point being at 50 molal per cent and indicating the formation of a compound of equimolecular composition. The temperature coefficient being small, the electrical conductance isotherm is given for 20° only. The curve passes through a maximum at 80 molal per cent of HClO₄, which gives no indication as to the composition of the compound formed. The corrected electrical conductance isotherms (Fig. 5) reproduce the course of the electrical conductivity qualitatively, but its maximum occurs at 67 molal per cent of HCl₄ and is indicative of a compound with the composition 2HClO₄, CHCl₄COOH.


⁸ The tabulated data are presented in papers to appear shortly in the J. Gen. Chem. (Russ.).

A considerable compression is observed in the system.

(c) The system HClO4-CH2ClCOOH

The system was investigated at temperatures of 20, 35 and 60°. The results are represented in Fig. 3.

The viscosity isotherms pass through an irrational maximum. The conductance isotherms also pass through a maximum which corresponds to 80 molal per cent of HClO₄ and, as the temperature rises, shifts towards monochloracetic acid. On correcting the electrical conductance for viscosity a symmetrical curve is obtained which passes through a maximum corresponding to the equimolecular composition HClO₄, CH₂ClCOOH.

The temperature coefficient of conductance has an inflexion point corresponding to 50 molal per cent and also pointing to the

existence of the compound HClO₄, CH₂ClOOH. A marked compres- 27 sion occurs in the system.

(d)The system HClO₄-CH₃COOH.

The system was investigated at temperatures of 20, 35 and 50°. The results are shown in Fig. 4. The viscosity diagram for this system falls within the class of rational diagrams. The viscosity maximum corresponds to 33 molal per cent HClO, and points to the formation of the compound HClO4.2CHaCOOH. The conductance curves pass through two maxima and a minimum lying between them; such a course of the curves is characteristic of systems with a deep interaction between the constituents. The positions of the maxima are 83 and 15 molal per cent of HClO,

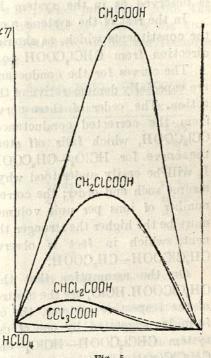


Fig. 5.

and that of the minimum, 33 molal per cent of HClO₄. The maximum of corrected conductance (Fig. 5). and that of the temperature coefficient (Fig. 4) correspond to the conductance minimum.

On the curve for the temperature coefficient of electrical conductance, apart from the maximum, an inflexion point is observed corresponding to 50 molal per cent and pointing to a compound of the composition HClO₄—CH₃COOH. A strong compression occurs in the system.

Discussion of results

Comparison of the data obtained shows in the first place that for the system HClO₄—CCl₃COOH the diagrams of all its properties are distinctly different from those of the other systems. In particular, the mixing of the components of this system is accompanied by expansion, whereas in the other systems compression occurs. It follows that HClO₄ does not interact with CCl₃ COOH in the same way as it does with H₂SO₄⁷; in these two systems the same picture is observed as in the system H₂SO₄—CCl₃COOH⁵.

In the rest of the systems a chemical interaction occurs between the constituents which, as should be expected, is intensified in the direction from CHCl.COOH to CH.COOH.

The curves for the conductance corrected for viscosity (Fig. 5) are especially demonstrative of the intensity of this chemical interaction. The order of these curves is seen to be regular, starting from the corrected conductance curve for the system HClO₄—CCl₃COOH, which falls off steadily from HClO₄ and ending with the curve for HClO₄—CH₃COOH which is situated uppermost. It will be easily understood why the corrected conductance curves assume such and order; the corrected conductance characterizes the number of ions per unit volume and, for a given acid (HClO₄), must be the higher the stronger the base taken as the second component, which in fact is observed in the series CHCl₂COOH—CH₂ClCOOH—CH₃COOH.

On the assumption that the compounds $CHCl_2.2HClO_4$ and $CH_2ClCOOH.HClO_4$ are the electrolytes determining the conductance of the respective systems, the conductance was computed by the formulae suggested by one of us, namely $x\eta = Ax^2(1-x)$ for the system $CHCl_2COOH-HClO_4$ and $x\eta = Ax(1-x)$ for the system $CH_2ClCOOH-HClO_4$.

The results of computations are shown in Fig. 5 by dotted lines. As is seen from the figure, the agreement between the results computed by the above formulae and the recalculated experimental data does not extend over the entire course of the curves. This discrepancy may be accounted for by the considerable change in density occurring in the systems under consideration and disregarded in our

orapsition HCOO, - CH,COOH, A strong composition occurs in the

. rapider

⁹ M. Usanovich, Acta Phys. Chim., 7, 871 (1936).

formulae. To allow for the change in density, the formulae should be written as follows:

$$\mathbf{x} \eta V_{1}^{2} V_{2} = K$$

where V_1^2 is the dilution of $HClO_4$, V_2 is the dilution of $CHCl_2COOH$, and

$$\varkappa \eta V_1 V_2 = K$$

where V₁ is the dilution of HClO₄ and V₂ is the dilution of CH₂ ClCOOH.

A similar computation is encountered in the work of S t e e l e, A r c h i b a l d and M c I n t o s h¹⁰, who proceeded from the assumption of a direct proportionality existing between the conductivity and concentration of the electrolyte, whilst our formula involves a correction for viscosity.

Molal percentage	K×104	Molal percentage	K×106
96.69	2.99	87.05	8.24
86.49	2.24	77.75	9.98
79.52	2.41	69.90	11.54
69.75	2.75	62.74	10.78
56.75	2.94	52.31	10.96
50.36	2.92	42.61	10.90
38.41	2.68	36.72	10.86
24.32	2.17	32.73	9.37
8.42	3.67	23.34	8.92
	0.00	17.67	8.03

Mean value of $K = 2.72 \times 10^{-4}$

Mean value of $K=9.62\times10^{-6}$

In both cases K remains fairly constant at all concentrations. All attempts to apply the same formulae to the system HClO₄—CH₃COOH have failed to yield positive results. This seems to be due to the fact that in the given system not one, but two compounds are formed; in fact, our data supply evidence mainly for the existence of HClO₄.2CH₃COOH, which is analogous to a dihydrate¹¹, and not for the equimolecular compound obtained by H ant zsh and L ang be in 12 in the crystalline form. An equimolecular com-

¹⁰ Steele, Archibald and McIntosh, Z. physik. Chem., 55, 429 (1906).

¹¹ van Wyk, Z. anorg. Chem., 48, 42 (1906).

¹² Hantzsh u. Langbein, Z. anorg. Chem., 204, 197 (1932).

pound not reflected in the form of any particular point on the viscosity and electrical conductivity curves may be thought of as affecting the magnitude of these properties and their concentration dependence. The more complex nature of the interaction in the system HClO₄—CH₃COOH does not permit the formulae to be applied to this system, for they take account of the formation of one compound only.

Summary

1. The electrical conductivity, viscosity and density of the systems HClO₄—CCl₃COOH, HClO₄—CHCl₂COOH, HCCl₄—ClCOOH and HClO₄—CH₃COOH have been studied.

2. It is established that HClO4 does not form any complex

compounds with CCl₃COOH.

3. The compounds CHCl₂COOH.2HClO₄, CHCl₂COOH.HClO₄, CH₂ClCOOH and 2CH₃COOH.HClO₄ have been detected.

3. The formation of these compounds is indicative of the basic

smoot consider medit groups Analysis days and or a samula state of

properties of CHCl2COOH, CH2ClCOOH and CH3COOH.

5. The data obtained confirm the fact that the strength of the acidic bases increases in the series: CHCl₂COOH<CH₂ClCOOH<CH₃COOH.

The Middle Asia State University, Laboratory of Physical Chemistry, Tashkent.

the contract of the contract of the contract of

has ed as has Howd (heatside showing and

Received August 1, 1945.