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The Arrhenius Equation and )h/e Active Complex

By M. Temkin

The question as to which of the formsof the Arrhenius equa-
tion should be used in calculating the activation energy and entropy
of an active complex (transition state) is not yet wholly settled in the
literature, Evans and Polanyi' maintained that the entropy of an
active complex should be calculated using the quantity K, from the
equation

k.:x-_—i—Ka% [6))

previously derived by these autors 2, but not K¥ determined by the
equation of Wynne-Jones and Eyring?

k=x kL 1))
(k, is the reaction velocity constant, K, and K#* are equilibrium con-
stants for the equilibrium between the initial molecules and the active
complex, defined in different ways *; v —the average velocity of cros-
sing the potential barrier, k—Boltzmann's constant; T—the abso-
lute temperature; #— Planck’s constant; » —the transmission coef-

ficient).

1 M. G. Evans and M. Polanyi, Trans, Farad. Soc., 33, 448 (1937).
2 M. G. Evans and M, Polanyi, Trans. Farad. Soc., 31, 875 (1935).
3W.F. K Wynne-Jones and H. Eyring, J. Chem. Phys., 3, 492
(1935).
& The relation between these quantities is as follows:

Ka = K:': [27:"“’ k}")'l”- ’
I

where m* is the reduced mass of the active complex.
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734 M. Temkin

Guggenheim?® and Eyring® objected to this point of view.
The Arrhenius equation is used both in the form

dlnk, A
R 3)
and in the form
s
ik wey A k0 R TR J
dT" " RT3 % 2T 7 oov Rqa %)

where A, or A', is the activation energy per mol, and R is the gas
constant,

Eq. (3) is very frequently applied to unimolecular reactions, and
eq. (4) to bimolecular ones in accordance with Tolman’s derivation’.
According to Polanyi and Evans, eq. (4) should be used regard-
less of the reaction order, since @ in eq. (1) is proportional to V7.
The latter opinion was shared by Guggenh eim?®, On the other hand,
some authors, e. g, Gershinowitz and Rice® maintained that
¢q. (4) may be applied to bimolecular reactions,

A number of other examples of such uncertainty and contradic-
tions existing in the literature might be readily quoted. It may there-
fore be thought that a systematic examination of the question as to
the constants in the Arrhenius equation from the standpoint of
the aclive complex method—a task which constitutes the subject
of this paper — will prove useful though it may contain nothing

essentially new.

Activation Energy

Eyring's fundamental equation for homogeneous gas reactions ®
may be represented in the following form:

B il e
k. % Ul T' (5)
5 E. A, Guggenheim, Trans. Farad, Soc., 33, 607 (1937).
¢ H. Eyring, Trans. Farad. Soc., 34, 41 (1933).
(192; R. S.Tolman, "Statistical Mechanics”, N. Y. Chemical Catalog Co.,
)
8§ H. Gershinowitz and O. K. Rice, J. Chem. Phys., 2, 273 (1934).
9 H. Eyring, J. Chem, Phys., 3, 107 (1935).
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Here x is the transmission coefficient which may be considered
independent of the temperature; the reaction velocity constant %, is cal-
culated for concentrations expressed as numbers of molecules in 1 cm®,;
G, is the product of complete partition functions for the initial mole-
cules, i. e., sums over the states calculated for the molecules contained
in 1 cm.®:

ity
6=Ne M g=1cm3 (6)
3
¢, is the energy of a molecule in the state i the summation?® is carried
out over all the possible states of a molecule in a volume of 1 cm.>.

G', is the partition function for the active complex, calculated over
all its degrees of freedoin except the co-ordinate / — the “reaction path”.
The energies of the states arc reckoned from the same initial level as
for the molecules of the reagenis, i

It follows from eq. (o) that

.\._1 Eg B_L:"LT
G gl 5 Ao
a7, }!2_2_—94__'1*1“ SRk )

where @ is the average energy of a molecule. Eq. (5) therefore gives

PR A I 1 e g
i R R ¢ )

in which &, is the averagé cnergy of the active complexes over all
degrees of freedom except the reaction path, and ¢, is the average
energy of the initial molecules. The “reaction path’” / being considered
as a translational degree of frcedom, it may seem at first sight that

- 1
the average energy corresponding to it equals — AT and, crnsequently,

that eq. (8) is equivalent to (4). This, however, is not the case,

In calculating the average energy one should take account of the
velocity, along the co-ordinate /, of the points which represent the active
complexes on the potential energy surface, and introduce a weight fac-

10 Jf the summation were carried out over the energy levels, we should

write G=2p,-e_ KT \where p; is the number of states with energy . Eq.

]
(6) is equivalent to this, since the summation is made over the states.
1*
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tor equal to the velocity along /, i, e., —,%‘_— where p, is the momentum

along the co-ordinate / and m* is the reduced mass.
Indeed, within a time interval d¢, over the top of the barrder will
pass those of the points possessing some definite momenfum p, which

lic at a distance . ¢t or less from the plane perpendicular to the

m*
co-ordinate / and drawn through the barrier top. The number of such
points per unit length along the co-ordinate / is proportional to e—#"/2m"sT,
and hence the number of points possessing a momenium p, and pene-
trating through the barrier plane is proportional to

f_l? o—Ppi2m" kT
We thus have
@
- _P_J’i"_ £F_ —m'lﬂm'l'?"
2m* m* e e

- o

b =T, )}
f-, Lo ikt
| m

o

where I, is the average encrgy of the reacting molecules associated
with the co-ordinate /, The total mean energy of the reacting mole-
cules, t,=3%/+%, is consequently equal to &+ &T.

Eq. (8) therefore gives

dp,

dink, __ &—¢ (10)

—_——rg !

ik, kT®
| which is equivalent to eq. (3).

Eq. (10) was first derived by Tolman, though only for unimo-
lecular reactions, From the above derivation it follows that it holds for
any reaction order; the quantity A calculated by eq. (3) gives in all
cases the diffcrence between the mean energies of the reacting and
initial molecules.

f : The pre-exponential factor . *

Integration of eq. (10) under the assunption of constancy of g, —z,
over a narrow temperature range leads to the equation

k=Be * (11)
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where B, i. e., the integration constant in the Arrhenius equation,
may be evaluated by the active complex method.
Eyring?® derived the following equation, which is equivalent
to eq. (B):
an 4] ol —Em
f" kT e kT . (12)

k=R

In this equation the partition functions F are defined as follows:

o tihe
FNg Meg—1lcanl, (13)
or
F=G e, (13a)

where z, is the energy of the lowest energy level of a molecule or
zero-point energy. It follows that here the energy of a molecule at
T—=—0 is taken as the initial energy level in contradistinction to func-
fons G for which the initial energy level is arbitrary and equal for
the reacting substances, reaction products, and active complexes.

The difference £, — g, between the zéro-point energies of the
active complex and the inifial molecules, i, e., the height of the energy
barrier, may be called the activation energy at T=0; it is evidently

not equal to §,—¢, i. e., to the activation energy at a temperature T.
Consequently, the quantity B is not equal to = -i—‘—kkl either.
1

! Before examining the question as to the expression for B in eq. (11)
’ let us consider the same point with respect to the equilibrium constant,

The latter obeys the following equation

it
K= (14)
or
Slpm St
KZ%:‘Z— e . X (15)

Here G, is the product of the complete partition functions for the

reaction products etc. The equilibrium constant K is defined as the

, ratio of the product of concentrations of reaction products to the pro-

i duct of concentrations of initial substances, the concentrations being,
' as before, expressed in numbers of molecules per 1 cm.?,
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From eq. (14) we obtain with the aid of eq. (7):

dInK—_:_sg—E‘ (16)

i, e, the van't Hoff equation,
Let us introduce a function w defined by the equation

i N JtT.; =1 cm.?, (17)

or
w = Qe¥; (17a)

w is therefore a partition function in whose calculation the energy taken
as the initial energy level is the average energy of molecules at the
given temperaturc, Such partilion functions have already been conside-

red by Rodebush!l,
Then it is evident that

L s |
W kT
K:Ee o (18)
i. e., the pre-exponential factor in the van’t Hoff equation (in the
integral form) is equal to the ratio of the products of functions w for
the reaction products and initial substances,
The function w may be readily expressed in terms of the func-
tion F. Indeed, from eqs. (17a) and (13a) it follews that

O
w=Fe ',
Now we have :
anf _i=n, (19)
and hence we obtain .
T_d'ln.‘: v
Gy Fa 0L (20)
or
E mw=mInF+T dénft- (21)

To disclose the meaning of the function w let us resort to the

11 W, H. Rodebush, Chem. Rev., 9, 319 (1931).
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relation between the chemical potential p. of an ideal gas and the par-
tiion function F:

l.
p=—n~TIn -+ (22)

where the chemical potential is referred to one molecule,

Let us introduce the chemical potential of a standard state, p.2,
meaning by the latter the state corresponding to a concentration of
1 molecule per cm® (¢==1). Then we have

w=p'+kTinc. (23)
From eq. (22) we obtain _
pd=—~kTIn F ¢, (24)

Substituting in eq. (21) the expression for In F according to eq. (24)
we shall have

Inw=—-- ——1- —dlfg--
¥ dl
Since
dpt a50
8 ( ETV_) e

where S° is the entropy of the substance in the standard state and NV
is the number of molecules, we get

D e I (25)

From the general relation between the entropy S and the thermo-
dynamic probability W,
" S e k In W,

it follovs that w is the ratio in which the thermodynamic probability
of the substance in the standard state as defined above increases on
addifion of one molecule, The function w may therefore be termed
the standard probability of a molecule,

2
It will be noted that the quantity (%)t - does not coincide with the

entropy of one molecule in 1 cm.3. In fact it is known that the entropy for
monatomic gases is given by
eho

= !
S kNInL BN

where m is the mass of one molecule, and hence

a8 reho 3, i 5, reho s;]
( )" T—k]ﬂL k-sTV- (2'.1ka) Q.Jk —k=FkiIn L-ks-—h—r‘(?ﬂmkn 2.1y

(27:ka)"'°] J

N
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whence, for ¢ = -gr- =1, we obtain

o e ]
(W)r, 1'_=.\'e[r|‘: 7 (2rmkT) sJ,

whereas, for N=1 and v =1,

[ eh Pen |
szanTﬂ-(zzmn!J.

Below we shall also obtain in another way the following relation for

monatomic gases:
:]r_‘,
= @rmeT)y".
s
The partial molal quantitics introduced by Lewis are defined as the
derivatives of thermodynamic functions with respect to the number of mols
of the component at constant pressure and temperature. For a pure substance,
these derivatives are equal to the respective thermodynamic functions per one
mol. This does not apply to the derivatives at constant volume and tempe-
rature.
Let us now pass to the question as to the expression for B in

eq. (11). Equations (5) and (17a) give

‘_fl"";I

O o 80 R E e e
T (26)
or
362 _ St T
g By Rl kT
k('_'"_'x w, 1 " (27)
Taking into account that z,=z2/~+- 2T we obfain
k 57 -?—!J' ka: e_ f‘l_T‘l . 28
"‘-_& wn 1] * ( )

Equations (12) and (28) are equivalent to each other. Eq. (12) is
convenient when a complete theoretical calculation is carried out to
obtain the absolute value of the reaction rate, i. e.,, when the poten-
tial energy surface is used to calculate both the height of the energy
barrier and the distribution function of the active complex, If, however,
only the pre-exponential factor is calculated theoretically, the activation
energy being determined experiméntally from the temperature depen-
dence of the reaction velocity constant, eq. (28) should be used, since
it directly contains the activation energy determined by the Arrhe-
nius equation.
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Calcalation of standard probabilities

As is known, from the fact that the motion of the centre of gra-
vity of a molecule is independent of the motion of its component
parts, it follows that the partition function F may be represented as the-
(2xmkT)"
et oAk
(m is the mass of the molecule) and the partition function for the
intra-molecular motions. The latter may be approximately expressed:

as the product of three factors: the electronic weight of the ground

82 JkT
al?

(J is the moment of inertia and & the symmetry number), or

82 (873 J, Jp Jo) 1 (RT):
ol

product of the partition function for the translational motion

state p, the rotational partition function for linear molecules,

for non-linear molecules (Ji, Jp and Jg are the principal moments of
inertia) and the product of vibrational partition functions (1 — e—vikT)=1
according to the number of normal wvibrations (v, is the frequency
of a normal vibration).

It follows from eq. (20) that if the function F can be factored,
the same may be said of the function w. Moreover, it follows from
the same equation that if the function F has the form

F=0bT7, (29)
where b is independent of T, then
w=>bT"e' =F¢". (30)

Hence, from the above expressions for F, it follows directly that for
the translational motion the function w is given by

(2=mk Te)n"r’
ey

Wiy == y (31)
whilst for rotational motion it equals
Cwa =201, _ (32)
or : - .
BNl G 33)

in the cases of linear and non-linear molecules respectively. The elec--
tronic weight p is retained in the function w,
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For harmonic vibration of frequency v,, the above expression for

F and eq. (20) give
Wy, = (1 — e~ ™lkT)™1 Ui /eTy (PR T—1) ™ (34)
The expressions given above render the use of standard proba-
bilities in approximate calculations as simple as the application of par-

tition functions,
It may be noted that the method previously applied by the pre-

sent author to the computation of pre-exponential fac ors '? was based
on the fact that the expressions

k= Be—FT
and
k=B TV =t/
may be held to be equivalent if B=2B'T}, ¢ and ¢=¢ 4+ YkT,,

where Ty is the mecan temperature; this method fully agrees with the
result obtained with the aid of functions w as may be seen from eqs.
(29) and (30) and from comparison of egs. (28) and (12).

Along with the calculation of the partition function of the active
complex from the moments of inertia and frequencies either determined
with the help of the potential energy surface for the given reaction or
estimated in some other way, recourse is frequently had to calculation
of this quantity from the experimental values of the reaction rates,
In such cases Wynne Jones and Eyring’s eq. (2) is ordinarly
used, the constant K¥ being represented as follows:

¥ o) an¥
feEosl Frg ANy (35)

The quantity AH¥ is called the heat of activation and ASF the
entropy of activation, The latter quantity is the entropy change on for-
mation of one mol of active complexes from the initial substances, both
the former and the latter being taken at unit concentration. As active
.complexes, systems are taken in which the values of the *reaction path”

co-ordinate lie within the interval ——!‘—'- including the top of the
(2xm* k1) h =

.activation barrier.

i2 M, Temkin, Acta Physicochimica URSS, 8, 141 (1938).
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The quantity AH¥ is defined by the equation

dink¥  AHF

and, since according to eq. (2) we may write

> d{nk,___dan* 3
e et =
it follows that i
AH¥—=A—RT, (38)
where A is defined by eq. (3), in accordance with eq. (10).
Since
35:‘:0 AH:‘:
B M T kT
'——-X.L e _k_-’
we have
e o
k'=:.¢,e & '_k_]f_e_e_ RT . (39)

Comparing the latter equation with eq. (28) we obtain in accord
with the significance of the function @
i
o 4
Gt : (40)

It follows from the above that it is more expedient to introduce the
constant K¥ not with the help of eq. (2) butin the following manner:

k= wKEELE. . (41)
For uniformity of notation we may introduce AE¥=A. Then we
have
' it i '
KER. TR R (42)

The introduction of the quantity AHF is superfluous.

The above refers to reactions between jdeal gases. The question
as to the form of the equations for solutions has been considered by
Guggenheim® His treatment, though faultless as a whole, requires
but one correction: the constant K¥ must be determined by eq. (41)
instead of eq. (2); Gug genheim has overlooked the specificity of
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the problem of calculation of the activation energy and therefore con-
siders eq. (4) to be correct (see above).

Reactions at surfaces

The active complex method has been extended by the author to
reactions at surfaces?. The application of the quasi-thermodynamic
treatment, i. e., calculation of the activation entropy from experimental
values of the reaction velocity, requires in the first place that the stan-
dard state for the adsorbed substance should be defined. If we confine
ourselves, as has been done by the author in the paper just cited,
to the case of “simple adsorption®, then the chemical potential of the
adsorbed substance per molecule, p.., will be given by

b —=— kTN F, 222 ey, (43)

where @ is the fraction of the surface covered, and the quantities with
the subscript a refer to the adsorbed substance,
Let the state for which §==1/, be taken as the standard one.
Then we have

Vo= :J.ﬂo + kT 1n l—i'a': (44)

u, being given by
p,=—kTInF,4¢,. (45)

As has been shown by the author, Langmuirs “law of surface
action” which determines the reaction rate at the surface, w, has the
following general form::

0o==Fk, H1 022 . A e rj;_("""”’* % '), (46)

where 6, 0,,... are the fractions of the surface covered by the sub-
stances entering into the reaction from the adsorbed state in the
amounts of n,, n, molecules, respectively; ¢, ¢, are the concentrations
of the substances entering into the reaction directly from the gaseous
phase in the amounts of 7, 7,... molecules; 0, is the fraction of the
surface free from adsorbed molecules; § is the number of sites on the
surface, occupied by the active complex.

The reaction velocity constant in eq. (46) is expressed as follows:

— 5ot~
kT " 7

h 5 (47)

s
k,==ulL r




The Arrhenius Equation and the Active Complex Method 745

where L denotes the number of sites on the surface, and g is the
number of possible positions of the active complex when one of the

sites it occupies is fixed.
On transiion from functions F to functions w we shall have

instead of eq. (47)

ot S |

b=l BB e HT (48)
~ This equation enables the standard entropy of the active complex
on the surface to be determined by means of eq. (28). The definition
of the standard state has been expounded above.

A calculation of the active complex entropy for the heterogeneous
process of the formation of quaternary ammonium salt has been carried
out by Gladischew and Syrkin 13 on the basis of experimental
values of the reaction rate. This calculation, however, is lacking in
rigour, Their method of calculation is equivalent to identifying the
functions w and F. Since in the case considered by these authors F,
is proportional to 7° (meglecting, as they did, the factors corresponding
to vibrational degrees of freedom), it follows that w,=F, e°®.

Since eq. (48), in contradistinction to eq. (47), contains the factor

Te : . = 1e
k'€, but not kT:"; the quantity w, is e’ times as large as F/ calcu-

R ok

h
lated by Gladischew and Syrkin. This correction changes the

quantity As¥ by 5R, i. e.. by 10 cals, per degree.

The example examined shows that the revision of concepts accor-
ding to the treatment given in this paper may lead to rather considerable
corrections in the numerical characteristics of active complexes.

Summary
A general derivation of the Arrhenius equation is given using
the active complex method. For a reaction of any order

dlnk,_.__?;—-s_l
dT kT2

?

where %, is the reaction velocity constant, , average energy of active
complexes, &, average energy of initial molecules, &, is calculated with

13 A, Gladischew and J. Syrkin, J. Phys. Chem. (Russ), 11, 425
(1938).
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the velocity of passing of the representative point over the potential
barrer as a weight factor.

The pre-exponential factor in the Arrhenius equation is given
by the equation

I g
__ w kTe ~ 7T
k N Vil 3

where functions w are related to partition functions F as follows:

dinF
dT

Formulae for calculation of w are given, The following equation
holds for the standard entropy of activation defined according to Winne-
AST:

Ilnw=—mF+T

Jones and Eyring,
150
R

—

wh

The calculation of the standard entropy of active complexes from
experimental data for reactions at surfaces is discussed.

The Karpov Institute of Physical Chemistry, Received
Moscow. September 11, 1940.




